WATER LEVELS IN MAJOR ARTESIAN AQUIFERS OF THE NEW JERSEY COASTAL PLAIN, 1988 By Robert Rosman, Pierre J. Lacombe, and Donald A. Storck **U.S. GEOLOGICAL SURVEY** Water-Resources Investigations Report 95-4060 Prepared in cooperation with the NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION West Trenton, New Jersey # CONTENTS | | Page | |---|------| | Abstract | 1 | | Introduction | 2 | | Purpose and scope | 2 | | Study area | 2 | | Previous investigations | 4 | | Well-numbering system | 4 | | Methods of data collection | 5 | | Description of data presented | 6 | | Acknowledgments | 8 | | Hydrogeology of the Coastal Plain | 8 | | Description of aquifers and confining units | 11 | | • | 12 | | Location of freshwater/saltwater interface | | | Water levels in artesian aquifers of the Coastal Plain | 13 | | Cohansey aquifer in Cape May County | 13 | | Water levels | 13 | | Water-level fluctuations | 13 | | Atlantic City 800-foot sand | 14 | | Water levels | 14 | | Water-level fluctuations | 14 | | Piney Point aquifer | 18 | | Water levels | 18 | | Water-level fluctuations | 23 | | Vincentown aquifer | 23 | | Water levels | 26 | | Water-level fluctuations | 26 | | Wenonah-Mount Laurel aquifer | 26 | | Water levels | 26 | | Water-level fluctuations | 29 | | Englishtown aquifer system | 30 | | Water levels | 30 | | Water-level fluctuations | 36 | | Potomac-Raritan-Magothy aquifer system | 37 | | Upper aquifer of the Potomac-Raritan-Magothy aquifer system | | | Water levels | 42 | | Water-level fluctuations | 42 | | Middle aquifer and undifferentiated part of the Potomac- | 42 | | Raritan-Magothy aquifer system | 43 | | | | | Water levels Water-level fluctuations | 43 | | | 53 | | Lower aquifer of the Potomac-Raritan-Magothy aquifer system | | | Water levels | 64 | | Water-level fluctuations | 64 | | Summary and conclusions | 65 | | Selected references | 71 | | Glossary | 74 | ## ILLUSTRATIONS | | | Page | |-------------|---|----------------------------------| | Plates 1-8. | Maps showing potentiometric surface of the: 1. Atlantic City 800-foot sand, 1988 | ocker
ocker
ocker
ocker | | Figure 1. | Map showing location of study area | 3 | | 2. | Diagrammatic hydrogeologic section of the New Jersey Coastal Plain | 10 | | 3. | Map showing potentiometric surface of the confined Cohansey aguifer, Cape May County, 1988 | 15 | | 4. | Water-level hydrographs for observation wells screened in the confined Cohansey aquifer, Cape May County, | 13 | | r | 1983-89 | 17 | | 5. | Water-level hydrographs for observation wells screened in the Atlantic City 800-foot sand, 1983-89 | 21 | | 6. | Water-level hydrograph for an offshore observation well screened in the Atlantic City 800-foot sand, 1987-89 | 22 | | 7. | Water-level hydrographs for observation wells screened | | | 8. | in the Piney Point aquifer, 1983-89 | 25 | | 9-14. | in the Vincentown aquifer, 1983-89 | 28 | | | <pre>in the: 9. Wenonah-Mount Laurel aquifer, 1983-89: (A) wells 7-478, 25-353, 25-486, and 29-140;</pre> | 34 | | | (B) well 33-252 | 35 | | | ground-water withdrawals, 1983-89 | 40 | | | large ground-water withdrawals, 1983-89 | 41 | | | withdrawals, 1983-89 | 50 | | 14. | withdrawals, 1983-89 | | | | IJUJ-UJ | 52 | ## ILLUSTRATIONS - - Continued | | Page | |--|------------| | Figure 15-16. Water-level hydrographs for observation wells screened in the: | | | | | | 15. Middle aquifer and undifferentiated part of the | | | Potomac-Raritan-Magothy aquifer system, 1983-89: | <i>c</i> 1 | | (A) wells 5-261, 5-440, 5-683, and 7-413; | 61 | | (B) wells 7-476, 11-137, 23-70, and 23-229; | 62 | | (C) wells 25-272, 29-19, 29-85, and 33-251 | 63 | | 16. Lower aquifer of the Potomac-Raritan-Magothy | | | aquifer system, 1983-89 | 69 | | TABLES | | | Table 1. Ground-water withdrawals from the New Jersey Coastal | | | Plain, by county and aquifer, 1983 and 1988 | 7 | | 2. Geologic and hydrogeologic units in the Coastal Plain of | , | | New Jersey | 9 | | 3-11. Water-level data for wells screened in the: | , | | | | | | | | 1988 | | | 4. Atlantic City 800-foot sand, 1983 and 1988 | | | 5. Piney Point aquifer, 1983 and 1988 | | | 6. Vincentown aquifer, 1983 and 1988 | | | 7. Wenonah-Mount Laurel aquifer, 1983 and 1988 | | | 8. Englishtown aquifer system, 1983 and 1988 | 38 | | 9. Upper aquifer of the Potomac-Raritan-Magothy aquifer | | | system, 1983 and 1988 | 44 | | Middle aquifer and undifferentiated part of the | | | Potomac-Raritan-Magothy aquifer system, 1983 and | | | 1988 | 55 | | 11. Lower aquifer of the Potomac-Raritan-Magothy aquifer | | | system, 1983 and 1988 | 66 | | • | | #### CONVERSION FACTORS AND VERTICAL DATUM | Multiply | Ву | <u>To obtain</u> | | | | | |------------------------------------|--------------------|------------------------|--|--|--|--| | inch (in.) | 25.4 | millimeter | | | | | | foot (ft) | 0.3048 | meter | | | | | | mile (mi) | 1.609
0.18 | kilometer | | | | | | square mile (mi ²) | 2.590 | square kilometer | | | | | | foot per mile (ft/m) | 0.1894 | meter per kilometer | | | | | | foot per second (ft/s) | 0.3048 | meter per second | | | | | | million gallons per day (Mgal/d) | 0.0438 | cubic meter per second | | | | | | million gallons per year (Mgal/yr) | 3.78×10^3 | cubic meter per year | | | | | <u>Sea level</u>: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929. # U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary **U.S. GEOLOGICAL SURVEY** Gordon P. Eaton, Director For additional information write to: District Chief U.S Geological Survey Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, NJ 08628 Copies of this report can be purchased from: U.S. Geological Survey Earth Science Information Center Open-File Reports Section Box 25286, MS 517 Denver Federal Center Denver, CO 80225 # WATER LEVELS IN MAJOR ARTESIAN AQUIFERS OF THE NEW JERSEY COASTAL PLAIN, 1988 By Robert Rosman, Pierre J. Lacombe, and Donald A. Storck #### ABSTRACT Water levels in 1,251 wells in the New Jersey Coastal Plain, in Philadelphia County, Pennsylvania, and in Kent and New Castle Counties, Delaware, were measured from October 1988 to February 1989 and compared with 1,071 water levels measured from September 1983 to May 1984. Water levels in 916 of the wells measured in the 1983 study were remeasured in the 1988 study. Alternate wells were selected to replace wells used in 1983 that were inaccessible at the time of the water-level measurements in 1988 or had been destroyed. New well sites were added in strategic locations to increase coverage where possible. Potentiometric-surface maps constructed from the water levels measured during 1988-89 show that large cones of depression have formed or expanded in the major artesian aquifers that underlie the New Jersey Coastal Plain. Hydrographs for observation wells typically show water-level declines over the 7-year period October 1, 1982, through September 30, 1989. The lowest water levels in the confined Cohansey aquifer were more than 20 feet below sea level in Cape May City, Cape May County. Water levels in this area declined as much as 8 feet over the 5-year period between the 1983 study and this study. Water levels in the Atlantic City 800-foot sand define an extensive, elongated cone of depression. Two offshore wells were drilled for the U.S. Geological Survey in 1985 to further define the cone in this area. Water levels in these wells, located 1.9 and 5 miles from Atlantic City, were 63 and 77 feet below sea level, respectively. Water levels were as much as 96 feet below sea level near Margate and Ventnor, Atlantic County. Water levels declined from 1983 to 1988 as much as 31 feet in the coastal region of Ocean County, 21 feet in Atlantic County, and 7 feet in Cape May County. Water levels in the Piney Point aquifer were as much as 56 feet below sea level in Seaside Park, Ocean County, and 45 feet below sea level in southern Cumberland County. Water level declines in the Piney Point aquifer in Cumberland County may be in response to large ground-water withdrawals in Kent County, Delaware. The lowest water levels in the Vincentown aquifer, as much as 9 feet below sea level, were measured in wells in the outcrop area of Salem County. Water levels revealed no significant change in static heads over the 5-year period. Deep cones of depression in the Wenonah-Mount Laurel aquifer in coastal areas of Monmouth and Ocean Counties and in the Englishtown aquifer system are similar in location and shape because of a hydraulic connection between the aquifers. Water levels declined as much as 52 feet in the Wenonah-Mount Laurel aquifer and 34 feet in the Englishtown aquifer system over the 5-year period. The lowest water levels in the Wenonah-Mount Laurel aquifer and the Englishtown aquifer system were 218 and 256 feet below sea level, respectively. The potentiometric surfaces in the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system form large cones of depression centered in Monmouth and Middlesex Counties and in Camden County. Water levels declined as much as 46 feet in the Monmouth County and Middlesex County area and 17 feet in the Camden County area over the 5-year period. The lowest water levels measured in the Monmouth and Middlesex Counties area and the Camden County area were 116 and 107 feet below sea level, respectively. #### INTRODUCTION Ground water is the major source of water for public supply in the Coastal Plain of New Jersey. Ground-water withdrawals from the Coastal Plain aquifers have
increased steadily from 1900 to the late 1970's. By the late 1950's, withdrawals had produced large regional cones of depression in the major artesian aquifers (Meisler, 1980, p. 21). During the 1970's increased withdrawals caused these cones to deepen and widen. In the late 1970's and the 1980's, ground-water withdrawals from most of the Coastal Plain aquifers changed little. Despite the small changes, cones of depression continued to follow the trends of the early 1970's. In 1988, 83.7 percent of all ground-water withdrawals in the New Jersey Coastal Plain were from the Potomac-Raritan-Magothy aquifer system. Withdrawals from the Potomac-Raritan-Magothy aquifer system decreased from 226.47 Mgal/d in 1983 to 221.51 Mgal/d in 1988. Withdrawals from the remaining aquifers increased slightly from 42.52 Mgal/d in 1983 to 43.12 Mgal/d in 1988. (Withdrawal data are from the site-specific water-use-data system data base on file at the U.S. Geological Survey (USGS), New Jersey District office in West Trenton, New Jersey.) Regional water-level changes in the New Jersey Coastal Plain have been documented by the USGS since 1973. Every 5 years, the USGS conducts a study to assess long-term changes in ground-water levels in the New Jersey Coastal Plain. This study was conducted in cooperation with the New Jersey Department of Environmental Protection. #### Purpose and Scope This report documents water levels and evaluates changes in water levels in the major artesian aquifers in the Coastal Plain of New Jersey. Tables listing well descriptions and water-level data are included. Water levels in 1,251 wells measured from October 1988 to February 1989 are compared with water levels in 1,071 wells measured from September 1983 to May 1984. Hydrographs of water levels in 43 observation wells for the 7-year period October 1, 1982, through September 30, 1989, and potentiometric-surface maps for each of the nine artesian aquifers also are included. #### Study Area The study area, which covers about 4,000 mi², includes the Coastal Plain of New Jersey (fig. 1). The study area is bounded by the Atlantic Ocean to the east and the Fall Line to the northwest (fig. 1). The area of study in the Coastal Plain includes Atlantic, Burlington, Camden, Cape May, Cumberland, Gloucester, Monmouth, Ocean, Salem, and parts of Mercer and Middlesex Counties. Areas in Kent and New Castle Counties, Delaware, and Philadelphia County, Pennsylvania, also have been included to identify water-level changes across the Delaware River and Delaware Bay. Figure 1. Location of study area. #### Previous Investigations The geology of ground-water resources in the New Jersey Coastal Plain aquifers is discussed in reports on county-wide investigations which include those on Atlantic County (Clark and others, 1968), Burlington County (Rush, 1968), Camden County (Farlekas and others, 1976), Cape May County (Gill, 1962), Gloucester County (Hardt and Hilton, 1969), Middlesex County (Barksdale and others, 1943), Monmouth County (Jablonski, 1968), Ocean County (Anderson and Appel, 1969), and Salem County (Rosenau and others, 1969). Regional studies were conducted to investigate the hydrogeology and water resources of the New Jersey Coastal Plain. Zapecza (1989) defined the hydrogeologic framework of the entire New Jersey Coastal Plain. Walker (1983) used water-level data collected in 1978 to produce potentiometric-surface maps and compared the data from 1978 to water-level data collected in 1970 and 1973; Eckel and Walker (1986) used water-level data collected in 1983 to produce potentiometric-surface maps and compared the 1983 water levels with those from 1978. Barksdale and others (1958) studied the ground-water resources of an area adjacent to the lower Delaware River Basin. Parker and others (1964) discussed water resources in the Delaware River Basin. Regional studies also were conducted to investigate the characteristics of specific aquifers. Nemickas and Carswell (1976) investigated the hydrogeology of the Alloway Clay Member of the Kirkwood Formation and the Piney Point aquifer. Nemickas (1976) described a digital simulation of ground-water flow in the Wenonah-Mount Laurel aquifer and presented water-level data for part of the aquifer for 1959 and 1970. Nichols (1977a, 1977b) reported on the geohydrology of the Englishtown aquifer system in the northern Coastal Plain and constructed a computer-simulation model of the aquifer. Gill and Farlekas (1976) constructed geohydrologic maps of the Potomac-Raritan-Magothy aquifer system. Farlekas (1979) investigated the geohydrology and constructed a digital-simulation model of the Farrington aquifer in the northern Coastal Plain. Luzier (1980) used a digital model to simulate water-level changes in the Potomac-Raritan-Magothy aquifer system. Other reports focus on the Kirkwood-Cohansey aquifer system in the Atlantic City area. Barksdale and others (1936) and Thompson (1928) discuss ground-water supplies in the Atlantic City region. Clark and Paulachok (1989) present potentiometric-surface maps for the principal aquifers in the Atlantic County area. #### Well-Numbering System The well-numbering system used in this report is based on the system used by the USGS in the respective states. In New Jersey and Pennsylvania, a well number consists of a county code and a sequence number for the wells inventoried in that county. The county codes for New Jersey counties included in this report are Atlantic, 1; Burlington, 5; Camden, 7; Cape May, 9; Cumberland, 11; Gloucester, 15; Mercer, 21; Middlesex, 23; Monmouth, 25; Ocean, 29; and Salem, 33. The county code for Philadelphia County, Pennsylvania, is PH. In Delaware, the well number consists of a grid location and a sequence number for the wells inventoried in each grid. #### Methods of Data Collection Static water levels were measured in 1,251 wells screened in the major artesian aquifers in the New Jersey Coastal Plain. Most of the wells are water-supply wells, including public supply, industrial, commercial, irrigation, and domestic wells. More than 24 percent of the wells included in this study are observation wells. Water-level data were collected from October 17, 1988, through February 22, 1989 (hereafter referred to as "the 1988 study"). Water levels generally were measured during fall, after heavy summer withdrawals had lessened. Water levels in the study area typically reach their annual highs in winter and early spring. Water-level measurements for the 1983 and 1988 studies were made on the same date or as close to the same date as possible. For the 1983 study, water levels were measured in 1,071 wells from September 29, 1983, to May 31, 1984. Water levels were measured in 916 of the same wells for both studies. Alternate wells were selected to replace wells used in 1983 that were inaccessible at the time of the water-level measurements or had been destroyed. For this report, the term "static water level" is the height of a vertical column of freshwater in a well casing above a standard datum that can be supported by the pressure at a given point. Water-level data and construction details for these wells are stored in the Ground-Water Site Inventory data base (GWSI) at the New Jersey District office of the USGS. Wells selected for the study were chosen on the basis of areal distribution, focusing on areas with large withdrawals and areas with limited data points for each aquifer. Aquifer designations for wells used in this report were obtained from the GWSI data base and were determined from geologic and geophysical data. New well sites selected to improve the distribution in areas of sparse coverage were added to the GWSI data base. Suggestions for including wells appropriate to the study were obtained through the Delaware River Basin Commission, the New Jersey Department of Environmental Protection, and local well owners. Static heads were measured by three methods, most accurate of which is the wetted-steel-tape method. For some wells, an electric tape water-level finder is more effective, although slightly less accurate, than a wetted-steel tape. The third and least accurate method is the airline method in which the vertical length of the well's airline must be known. The airline method was used only when wells were inaccessible with the steel tape or electric tape. Downhole recorders were used to collect water-level data in two offshore wells screened in the Atlantic City 800-foot sand. Large-capacity withdrawal wells screened in the same aquifer and located less than 0.25 mi from the well being measured were shut down for a minimum of 1 hour prior to measurement. During the 1983 study, all wells within a 1-mi radius and screened in the same aquifer were shut down. USGS investigations conducted after the 1983 study revealed that the pumping of large-capacity wells produced little effect on water levels in wells located more than 0.25 and less than or equal to 1 mi away (R.L. Walker, U.S. Geological Survey, oral commun., 1988). Therefore, to simplify procedures without reducing quality for the 1988 study, only those wells within a 0.25-mi radius were shut down. Several measurements were made in each well until two similar readings were obtained at least 5 minutes apart to assure that the aquifer had recovered sufficiently from its stressed condition. In most Coastal Plain aquifers, water levels in the large-capacity wells can be expected to recover to within 90 to 95 percent of the static head in about 1 hour. The Englishtown aquifer system and Wenonah-Mount Laurel aquifer in Monmouth and Ocean Counties, however, contain silt and clay that cause low transmissivities and increase recovery time to 3 to 5 hours (R.L. Walker, U.S. Geological Survey, oral commun., 1988). Water levels were referenced to land-surface datum at each measuring site. The altitude of land surface was used to adjust the measured water levels to sea-level datum. Altitudes of land surface were
obtained from the GWSI file, field-checked against topographic maps, and corrected if necessary. Some well owners provided accurate altitudes from leveling surveys; however, most land-surface altitudes were estimated from USGS 7-1/2-minute topographic maps, which are considered to be accurate to within half the contour interval of the map, usually 10 to 20 ft. The datum used in this report is sea level. Selected wells screened in each aquifer are shown in figure 3 and on plates 1 through 8 (farther on). #### Description of Data Presented Water levels, water-level changes, potentiometric-surface maps, and water-level hydrographs are grouped by aquifer and discussed in the sections representing these aquifers. A table containing well and water-level data is presented at the end of each section. These tables include the well number for each site, which is used for reference throughout the report; site location (latitude and longitude); owner's name; local well number; year drilled; altitude of land surface; and screened interval. Changes in water levels from 1983 to 1988 are given for these sites. Water levels in some wells were measured in 1984 and 1989 because of problems encountered at the sites. These wells are so noted in the tables. Descriptive information in the tables has been updated to reflect new information obtained during the 1988 study. Water levels can vary seasonally as much as 25 ft in some aquifers. The potentiometric-surface maps do not reflect these large seasonal changes because water levels were measured in the fall when they were about average for the year. Examples of these seasonal fluctuations can be seen by examining the water-level hydrographs at the end of each aquifer description. Water levels measured at the same time of the year can be used for evaluating long-term trends. Differences in heads in a few randomly spaced wells may be caused by local variations in withdrawal or recharge, measurement-accuracy limitations, or differences in the recovery periods at recently pumped wells. Total withdrawals from the major artesian aquifers were 268.99 Mgal/d in 1983 and 264.63 Mgal/d in 1988 (R.M. Clawges, U.S. Geological Survey, written commun., 1991). Ground-water withdrawals from the Vincentown aquifer; Wenonah-Mount Laurel aquifer; Englishtown aquifer system; and the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system decreased or stabilized; however, water levels continued to decline. Withdrawals from the major artesian aquifers in 1983 and 1988 are listed in table 1. A 1:250,000-scale potentiometric-surface map for 1988 is shown for each aquifer (fig. 3 and pls. 1-8). These maps were prepared from the water-level data listed in tables 3 to 11 (farther on) and show only selected Table 1. Ground-water withdrawals from the New Jersey Coastal Plain, by county and aquifer, 1983 and 1988 [Withdrawals in million gallons per day; --, indicates no data; ground-water withdrawals in this table have been updated from Eckel and Walker (1986) to reflect withdrawals from the Vincentown aquifer and to include data unavailable at the time of their publication] | | Cohan
aquif
(confi | Cohansey
aquifer
(confined) | | Atlantic City
800-foot sand | | Piney Point
aguifer | | Vincentown
aquifer | | |------------|--------------------------|-----------------------------------|-------|--------------------------------|------|------------------------|------|-----------------------|--| | County | 1983 | 1988 | 1983 | 1988 | 1983 | 1988 | 1983 | 1988 | | | Atlantic | • • | • • | 8.34 | 10.14 | 0.10 | 0.32 | | | | | Burlington | • • | | | •• | .01 | .01 | | | | | Camden | | | | | | | | | | | Cape May | 6.08 | 6.10 | 6.50 | 6.29 | | •• | •• | | | | Cumberland | •• | | | | • • | | •• | | | | Gloucester | •• | • • | | | | | | | | | Mercer | •• | | | •• | | • • | | | | | Middlesex | | | | | • • | | •• | | | | Monmouth | | | | •• | | • • | 0.28 | 0.07 | | | Ocean | •• | | 4.13 | 3.81 | 1.64 | 1.51 | .49 | .35 | | | Salem | | •• | | , | | | •• | | | | Total | 6.08 | 6.10 | 18.97 | 20.24 | 1.75 | 1.84 | .77 | .42 | | | | | | | system | | | | | | | |------------|---------------------------------|------|-------------------------------|--------|-------|-------|--------|-------|-------|-------| | | Wenonah-Mount
Laurel aquifer | | Englishtown
aquifer system | | Upper | | Middle | | Low | er | | County | 1983 | 1988 | 1983 | 1988 | 1983 | 1988 | 1983 | 1988 | 1983 | 1988 | | Atlantic | • • | | • • | | • • | | | | | | | Burlington | 2.11 | 2.18 | 0.35 | 0.13 | 5.97 | 6.10 | 22.64 | 22.88 | 6.34 | 6.54 | | Camden | .63 | 1.38 | .18 | .39 | 9.32 | 11.80 | 11.89 | 8.61 | 49.70 | 43.65 | | Cape May | •• | • • | | | | •• | | •• | | | | Cumberland | •• | | | •• | •• | •• | | | | | | Gloucester | .09 | .07 | | •• | 12.87 | 11.91 | 7.27 | 7.30 | 7.73 | 8.46 | | Mercer | | | | | 1.72 | 1.98 | 6.41 | 7.60 | • • | | | Middlesex | •• | | | | 24.04 | 23.64 | 18.96 | 14.34 | | | | Monmouth | 1.47 | 1.00 | 5.25 | 5.05 | 18.05 | 18.04 | 6.34 | 8.79 | | •• | | Ocean | .09 | | 3.75 | 3.48 | 2.71 | 2.64 | 2.13 | 5.22 | 5.27 | 5.01 | | Salem | .58 | .26 | •• | | 3.20 | 2.46 | 3.01 | 3.91 | .90 | .63 | | Total | 4.97 | 4.89 | 9.53 | 9.05 | 77.88 | 78.57 | 78.65 | 78.65 | 69.94 | 64.29 | wells from these tables, although data from all the wells were used in contouring. The accuracy of the potentiometric contours depends on the distribution of wells, accuracy of land-surface-altitude data, and accuracy of the water-level measurements. These maps show potentiometric-head distribution for the confined part of each aquifer. Potentiometric-surface maps are useful in defining recharge and discharge areas, the generalized path of ground-water flow from recharge to discharge areas, and the hydraulic gradient along these flow paths. The hydraulic gradient can be used to determine the average ground-water velocity along a given path if the local hydraulic conductivity and porosity of the aquifer are known. Water-level hydrographs for selected observation wells from the USGS observation-well network show water-level trends for each aquifer for the 7-year period, 1983 through 1989. The hydrographs are based on water-level data recorded by three methods: (1) lowest monthly water levels from sites with automatic digital recorders, (2) lowest water levels and manual measurements from sites with extremes recorders, and (3) hourly water levels recorded by an offshore downhole recorder. Individual hydrographs based on lowest monthly and hourly water levels from automatic digital recorders and downhole recorders show seasonal water-level variations and local long-term trends for each aquifer. Although the period between studies is about 5 years, the hydrographs represent a 7-year period in order to show water-level conditions in the aquifers in the water year prior to the 1983 water-level measurements and in the water year after the 1988 water-level measurements. Therefore, water-level changes defined by the hydrographs do not always agree with those values listed in the tables for the 5-year period. The water year is represented by the 12-month period from October 1 through September 30. The water year is designated by the calendar year in which it ends. Thus, the 12-month period ending September 30, 1988, is called the 1988 water year. #### <u>Acknowledgments</u> The authors thank well owners who provided information and granted access to their wells for water-level measurements. Water-level data and hydrographs for selected observation wells were compiled by Walter D. Jones of the USGS. #### HYDROGEOLOGY OF THE COASTAL PLAIN The Coastal Plain aquifers are part of the wedge-shaped mass of sediments composed of alternating layers of sand, silt, and clay that overlie pre-Cretaceous crystalline rock southeast of the Fall Line in New Jersey (table 2). The Cretaceous and Tertiary sediments, in general, strike northeast-southwest, dip to the southeast from 10 to 60 ft/mi, and underlie essentially flat-lying Quaternary deposits (Zapecza, 1989, p. 5). The sediments that compose the Coastal Plain range in thickness from less than 50 ft at the Fall Line to more than 6,500 ft in Cape May County (Gill and Farlekas, 1976). Figure 2 is a generalized hydrogeologic section that shows aquifers and several areally extensive confining layers that form their upper and lower hydrologic boundaries. The hydrogeologic framework of the New Jersey Coastal Plain is discussed in detail by Zapecza (1989). **Table 2.** Geologic and hydrogeologic units in the Coastal Plain of New Jersey [Modified from Zapecza, 1989, table 2] | SYS | STEM SERIES | | LITHOLOGY | | GEOLOGIC
JNIT | HYDROLOGIC
CHARACTERISTICS | |------------|---------------------|---|---|---|---|---| | any | Halasana | Alluvial
deposits | Sand, silt and black mud. | | | Surficial material, commonly | | Quaternary | Holocene | Beach sand
and gravel | Sand, quartz, light-colored, medium- to coarse-grained pebbly. | undiffe | erentiated | hydraulically connected to underlying
aquifers. Locally some units may act
as confining units. Thicker sands are | | σ | Pleistocene | Cape May
Formation | | | | capable of yielding large quantities of water. | | | | Pennsauken
Formation
Bridgeton
Formation | Sand, quartz, light-colored, heterogeneous, clayey, pebbly. | | kwood- | A major aquifer system. Ground | | | | Beacon Hill
Gravel | Gravel, quartz, light-colored,
sandy. | Co
aq | hansey
uifer | water occurs generally under
water-table conditions. In Cape
May County, the Cohansey Sand | | | Miocene | Cohansey
Sand | Sand, quartz, light-colored, medium- to coarse-grained, pebbly, local clay beds. | sys | stem | is under artesian conditions. | | Tertiary | | Kirkwood
Formation | Sand, quartz, gray and tan, very fine to medium-grained, micaceous, and dark-colored diatomaceous clay. | Rio Gra
water-b
Con
Atlar | fining unit nde earing zone fining unit itic City foot sand | Thick diatomaceous clay bed occurs along coast and for a short distance inland. A thin water-bearing sand is present in the middle of this unit. A major aquifer along the coast. | | | | | | | | Poorly permeable sediments. | | | Oligocene
Eocene | Piney Point
Formation ¹ Shark
River
Formation | Sand, quartz and glauconite, fine- to coarse-grained. | | Piney Point
aquifer | Yields moderate quantities of water. | | | | Manasquan
Formation | Clay, silty and sandy, glauconitic, green gray, and brown, contains fine-grained quartz. | ing — | | Poorly permeable sediments. | | | Paleocene | Vincentown
Formation | Sand, quartz, gray and green, fine- to coarse-grained, glauconitic, and brown clayey, very fossiliferous, glauconite and quartz calcarenite. | | /incentown
aquifer | Yields small to moderate quantities of water in and near its outcrop area. | | | | Hornerstown
Sand | Sand, clayey, glauconitic, dark-green, fine-to coarse-grained. | ig i | | Poorly permeable sediments. | | | | Tinton Sand
Red Bank Sand | Sand, quartz, glauconitic, brown and gray, fine- to coarse-grained, clayey, micaceous. | Composite | ed Bank Sand | Yields small quantities of water in and | | | | Navesink
Formation | Sand, clayey, silty, glauconitic, green and black, medium- to coarse-grained. | Ö | | near its outcrop area. Poorly permeable sediments. | | | | Mount Laurel
Sand | Sand, quartz, brown and gray, fine- to coarse-grained, slightly glauconitic. | | nah-Mount
aquifer | A major aquifer. | | | | Wenonah
Formation | Sand, very fine- to fine-grained, gray and brown, silty, slightly glauconitic. | Marsi | nalltown- | | | | Upper
Cretaceous | Marshalltown
Formation | Clay, silty, dark-greenish-gray; contains glauconitic quartz sand. | Wend | | A leaky confining unit. | | sn | Cretaceous | Englishtown
Formation | Sand, quartz, tan and gray, fine- to medium-
grained; local clay beds. | | shtown
er system | A major aquifer. Two sand units in Monmouth and ocean Counties. | | Ceo | | Woodbury Clay | Clay, gray and black, and micaceous silt. | | hantville-
dbury | A major confining unit. Locally the | | Cretaceous | | Merchantville
Formation | Clay, glauconitic, micaceous, gray and black; locally very fine grained quartz and glauconitic sand are present. | | ning unit | Merchantville Formation may contain a thin water-bearing sand. | | | | Magothy
Formation | Sand, quartz, light-gray, fine- to coarse
grained. Local beds of dark gray lignitic
clay. Includes Old Bridge Sand Member. | gothy | Upper aquifer Confining | A major aquifer system. In the | | | | Raritan
Formation | Sand, quartz, light-gray, fine- to coarse-
grained, poorly arkosic; contains red,
white, and variegated clay. Includes
Farrington Sand Member. | Potomac-Raritan-Magothy
aquifer system | unit
Middle
aquifer | northern Coastal Plain, the upper aquifer is equivalent to the Old Bridge aquifer and the middle aquifer is equivalent to the Farrington aquifer. In the Delaware River Valley, three | | | Lower
Cretaceous | Potomac
Group | Alternating clay, silt, sand, and gravel. | Potomac | Confining unit | aquifers are recognized. in the deeper subsurface, units below the upper aquifer are undifferentiated. | | Pre | e-Cretaceous | Bedrock | Precambrian and lower Paleozoic crystalline rocks, schist and gneiss; locally Triassic sandstone and shale, and Jurassic diabase are present. | Bedr | aquifer ock ning unit | No wells obtain water from these consolidated rocks, except along Fall line. | Figure 2. Diagrammatic hydrogeologic section of the New Jersey Coastal Plain. (From Zapecza and others, 1987) #### Description of Aquifers and Confining Units The Kirkwood-Cohansey aquifer system consists of coarse gravel to dense clays of Miocene age. The aquifer system is present throughout the Coastal Plain southeast of the outcrop of the Kirkwood Formation and functions as a water-table or semiartesian aquifer in most areas (Walker, 1983). Only the artesian part of the aquifer in Cape May County is discussed in this report. The thickness of the confined Cohansey aquifer in Cape May County ranges from about 50 ft to about 225 ft. The Atlantic City 800-foot sand is composed of gray, medium- to coarse-grained sand and gravel with interspersed fragmented shell material of the Kirkwood Formation of middle Miocene age. The Atlantic City 800-foot sand is recognizable in the subsurface only where it is overlain by a thick, massive clay bed in the southeastern part of the Coastal Plain (Zapecza, 1989). The thickness of the aquifer is greater than 200 ft at Cape May City, Cape May County. The Atlantic City 800-foot sand is the principal confined aquifer tapped for water supply along the barrier beaches from Stone Harbor, Cape May County, to Harvey Cedars, Ocean County. The Piney Point aquifer is composed of fine- to coarse-grained glauconitic quartz sand and shell beds of the Piney Point Formation of late Eocene age. The Piney Point Formation does not crop out in the New Jersey Coastal Plain. The thickness of the Piney Point aquifer is greater than 200 ft in southwestern Cumberland County. The Piney Point Formation is overlain unconformably by silty clay of the basal part of the Kirkwood Formation (Zapecza, 1989). The Vincentown aquifer consists of moderately permeable sediments of the Vincentown Formation of Paleocene age. The formation consists of two lithofacies--a massive, sparsely glauconitic quartz sand and a fossiliferous calcareous quartz sand (Parker and others, 1964, p. 58). Throughout most of its subsurface extent, the Vincentown Formation functions primarily as a confining unit. The outcrop area extends in an irregular and discontinuous band from northeastern Monmouth County to the Delaware River adjacent to Salem County. The thickness of the Vincentown aquifer ranges from about 20 ft in the outcrop to more than 80 ft in Salem County and northern Burlington County. The confining unit overlying the Vincentown aquifer includes sediments of the Manasquan and basal Kirkwood Formations (Zapecza, 1989). The Wenonah-Mount Laurel aquifer is composed primarily of fine- to coarse-grained sand of the Wenonah Formation and Mount Laurel Sand of Upper Cretaceous age. The Mount Laurel Sand consists of coarser grained sediments than those of the Wenonah Formation and is the principal component of the aquifer. These units crop out in an irregular band that extends from Raritan Bay to the Delaware River adjacent to Salem County. The thickness of the aquifer ranges from about 40 ft at the outcrop area near Raritan Bay to more than 130 ft in north-central Salem County. The aquifer is overlain by a composite confining unit of Upper Cretaceous to Miocene age. This layer consists of the Navesink Formation and other units, depending on location within the Coastal Plain (Zapecza, 1989, table 2). The Englishtown aquifer system consists of medium- to fine-grained quartz sand and clayey silt of the Englishtown Formation of Upper Cretaceous age. The formation crops out in an irregular band that extends from Raritan Bay to the Delaware River adjacent to Salem County. The thickness of the Englishtown aquifer system is greater than 140 ft in Monmouth and Ocean Counties. The aquifer system thins to the south and is absent in the southeastern part of the Coastal Plain. A leaky confining unit overlying the Englishtown aquifer system is composed of the Marshalltown Formation and the fine-grained sediments of the lower part of the Wenonah Formation (Walker, 1983). The upper aquifer of the Potomac-Raritan-Magothy aquifer system consists of sand with some silt and clay mainly of the Magothy Formation of Upper Cretaceous age. The upper aquifer is the most extensive unit of the aquifer system. The outcrop of the upper aquifer extends in a narrow band from Raritan Bay to the Delaware River adjacent to Salem County. The thickness of the upper aquifer ranges from less than 50 ft in Cape May County to greater than 200 ft in northeastern Monmouth County. The confining unit overlying the upper aquifer is composed primarily of fine-grained sediments of the Merchantville Formation and the Woodbury Clay of Upper Cretaceous age (Zapecza, 1989). The middle aquifer and undifferentiated part of the Potomac-Raritan-Magothy aquifer system consist primarily of sand with discontinuous silt and clay layers of the Potomac Group and Raritan Formation. The outcrop of the middle aquifer extends in a narrow band from Raritan Bay in the northeastern part of Coastal Plain to the Delaware River adjacent to Salem County. The thickness of the middle aquifer ranges from less than 50 ft near the outcrop to greater than 150 ft near the junction of Mercer, Middlesex, and Monmouth Counties. The confining unit overlying the middle and undifferentiated parts of the aquifer system is equivalent primarily to the Woodbridge Clay Member of the Raritan Formation in the northeastern part of the Coastal Plain and the Bass River Formation in Burlington, Ocean, and Monmouth Counties (Zapecza, 1989). The lower aquifer of the Potomac-Raritan-Magothy aquifer system consists mainly of sand and gravel locally interbedded with silt and clay of the Potomac Group and Raritan Formation. The lower aquifer lies unconformably on pre-Cretaceous bedrock or weathered bedrock, which acts as the lower confining layer (Zapecza, 1989). The thickness of the lower
aquifer is greater than 250 ft in Salem County. The confining unit overlying the lower aquifer is composed primarily of very fine-grained silt and clay of the Potomac Group and the Raritan Formation. Recharge to the Coastal Plain aquifer is largely by infiltration of precipitation on the outcrop areas and leakage from the overlying surfacewater bodies. At several locations, recharge from surface-water bodies is induced by the lowering of potentiometric heads in the aquifers as a result of ground-water withdrawals. Ground water is released from the Coastal Plain aquifers by discharge to overlying surface-water bodies, by evapotranspiration, and by withdrawals from wells. #### Location of Freshwater/Saltwater Interface The estimated location of the 250-mg/L isochlor in the confined Cohansey aquifer in Cape May County is shown in figure 3. The location of the isochlor is based on water-quality data from an investigation of the water resources of Cape May County (P.J. Lacombe, U.S. Geological Survey, written commun., 1993). The estimated location of the 250-mg/L isochlor in the Atlantic City 800-foot sand is shown on plate 1. The location of the isochlor is based on water-quality data from an investigation of the water resources of the Atlantic City region (S.D. McAuley, U.S. Geological Survey, written commun., 1991) and Cape May County (P.J. Lacombe, U.S. Geological Survey, written commun., 1993). The approximate seaward limit of freshwater is delineated by chloride concentrations of 10,000 mg/L in the Piney Point, Vincentown, and Wenonah-Mount Laurel aquifers; the Englishtown aquifer system; and the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system (pls. 2-8). The locations of chloride-concentration contours are based on results of the Regional Aquifer System Analysis investigation by Martin (1990) and on data from Schaefer (1983), Pucci (1993), Gill and Farlekas (1976), and A.D. Gordon (U.S. Geological Survey, written commun., 1993). # WATER LEVELS IN ARTESIAN AQUIFERS OF THE COASTAL PLAIN #### Cohansey Aquifer in Cape May County #### Water Levels Water-level measurements for 37 wells screened in the confined Cohansey aquifer in southern Cape May County are listed in table 3. Most of the wells are located in Lower and Middle Townships, between Cape May City and Rio Grande. Most of the withdrawals from the Cohansey aquifer are from the area south of Cape May Court House (fig. 3). Water levels in these wells were used to define the potentiometric surface shown in figure 3, though only 27 wells are plotted. Water levels in a cone of depression centered in Cape May City were as low as 20 ft below sea level. The cone extends north of Rio Grande, where water levels were from 5 to 6 ft below sea level. The highest water levels, ranging from 4 to 6 ft above sea level, were measured in wells located between Cape May Court House and Woodbine. #### Water-Level Fluctuations Water-level changes in 28 wells were calculated for the 5-year period. Water levels rose in 20 wells, declined in 3 wells, and were unchanged in 5 wells. Water levels in the Cohansey aquifer were measured 2 to 3 weeks later in 1988 than in 1983, and therefore had more time to recover from the heavy withdrawals of the summer pumping period. This resting period probably accounts for the increase in water levels in most wells. Groundwater levels in Cape May County are affected by the tide. Tidal cycles that range from about 6 to 8 ft per day can result in water-level variations of 1 to 2 ft per day in wells screened in the Cohansey aquifer. Water levels measured during the 1988 study were 7 to 13 ft higher in and around the cone of depression in Cape May City than those measured during the 1983 study, probably because they were measured later and because ground-water withdrawals decreased in Cape May City. Water levels declined 1 to 2 ft in four wells, and water levels were unchanged in several wells located away from the center of the cone of depression in Cape May City. Hydrographs of water levels in four observation wells screened in the Cohansey aquifer are shown in figure 4; well locations are shown on figure 3. Well 9-49 is located northwest of the center of the cone of depression in Cape May City. The hydrograph shows little change in water level over the 7-year period from 1983 to 1989. Seasonal variations ranging from 10 to 14 ft result from variations in ground-water withdrawals and tidal fluctuations. The hydrograph for well 9-89, which is located about 4 mi southwest of Cape May City, shows no long-term change in water levels. Water levels in well 9-99, located northeast of Cape May Court House, show seasonal variations of as much as 17 ft resulting from the combination of tides and local ground-water withdrawals. Long-term trends indicate that water levels have declined 1 ft. The hydrograph for well 9-150, located west of Cape May City, shows a slight upward trend for the period. Seasonal variations of as much as 17 ft can be attributed to ground-water withdrawals and tidal fluctuations. #### Atlantic City 800-Foot Sand #### Water Levels Water-level measurements for 79 wells screened in the Atlantic City 800-foot sand aquifer are listed in table 4. The number of these wells by county is as follows: Atlantic, 32; Cape May, 29; and Ocean, 18. Water levels in these wells were used to define the potentiometric surface, though only 47 wells are plotted on plate 1. The potentiometric-surface map of the Altantic City 800-foot sand (pl. 1) shows a cone of depression underlying the coast from central Cape May to southern Ocean County, west to Egg Harbor, and east into the Atlantic Ocean. Potentiometric-surface contours that extend offshore were based on water levels in two offshore observation wells located 1.9 and 5 mi east of Atlantic City. Water levels in this aquifer were lowest between Atlantic City and Ocean City, Atlantic County; heads were as low as 96 ft below sea level (well 1-593). Near Beach Haven, Ocean County, heads were as low as 31 ft below sea level. The highest heads, 19 ft above sea level, were measured in Egg Harbor City in central Atlantic County. #### Water-Level Fluctuations Water-level changes over the 5-year period were calculated for 56 wells screened in the Atlantic City 800-foot sand. Water levels rose in 13 wells, declined in 37 wells, and were unchanged in 6 wells. The greatest declines in head were in the Pleasantville, Ventnor, and Margate areas. Water levels declined as much as 21 ft in these areas over the 5-year period. Water levels near the coast in Ocean County rose 3 to 5 ft. A major exception is at Harvey Cedars, where water levels rose 12 ft. Ground-water withdrawals near Beach Haven, Ocean County, probably caused water levels to decline 1 to 5 ft in this area (well 29-12). Heads in inland wells declined as much as 3 ft (well 29-774). Figure 3. Potentiometric surface of the confined Cohansey aquifer, Cape May County, New Jersey, 1988. Table 3. <u>Water-level data for wells screened in the confined Cohansey aquifer in Cape May County, 1983 and 1988</u> [CONSRV, Conservation; CO, County; ft, feet; GARD, Garden; LK, Lake; mo, month; MUA, Municipal Utilities Authority; NW, Northwest; TWP, Township; USGS, U.S. Geological Survey; WD, Water Department; --, missing data; NM, not measured; NA, not applicable; wells marked with an asterisk (*) are shown on figure 3] | Well
number | | on
ongi-
ude Own | er | Local
number | Year
drilled | Altitude
of land
surface ¹
(ft) | Screened
interval ²
(ft) | Alti | Water
983
Date
(mo/
day) | level
1988
Alti-Date
tude ¹ (mo
(ft) day) | Change in
water
level
/ (1983-88)
(ft) | |----------------------------|--|--|--|--|---|---|---|--------------------------------------|---|--|--| | *9- 27
9- 28 | 385612 745
385651 745
385643 745
385641 745
385640 745 | 310 US COA
533 CAPE M
749 NW MAG | ST GUARD
IAY CITY WID
INESITE | CMCWD 1 OBS
USCG 1
CMCWD 3
NW MAG 2
NW MAG 1 | 1940
1943
1950
1953
1942 | 7
11
7
10
10 | 281- 321
292- 322
277- 306
235- 265
296- 321 | -21
-15
-30
-13
-9 | 11/10
11/16
11/10
11/14
11/14 | -14 12/01
-10 12/01
-20 12/07
-6 12/01
-9 12/01 | 7
5
10
7
0 | | 9- 42
9- 43
*9- 48 | 385701 745
385723 745
385724 745
385748 745
385804 745 | 240 BORDON
521 CAPE M
533 USGS | | CMCWD 2
SNOW 3
CMCWD 5
CANAL 5 OBS
HIGBEE BCH 3 O | 1966
1969
1967
1957
BS 1957 | 10
5
15
17
6 | 174- 282
259- 289
246- 276
242- 252
241- 250 | -33
-18
-28
-23
-15 | 11/10
11/16
11/10
11/10
11/15 | -20 12/07
-12 12/04
-16 12/07
-17 12/01
-13 12/01 | 13
6
12
6
2 | | *9- 57
*9- 58 | 385851 745
385905 745
385919 745
390015 745 | 625 LOWER
518 LOWER
440 CAPE M | TWP MUA
TWP MUA
IAY CO | LTMUA 1
LTMUA 2
LTMUA 3
1
2 | 1956
1962
1974
1942
1942 | 18
14
20
20
20 | 241- 262
212- 247
263- 303
248- 275
252- 278 | - 15
- 18
- 13
- 15
- 15 | 11/15
11/15
11/15
11/21
11/21 | -16 12/07
-16 12/07
-13 12/07
-14 12/08
-14 12/08 | -1
2
0
1
1 | | *9- 65
*9- 80
*9- 89 | 390056 745
390130 745
390213 745
390425
745
390611 744 | 350 WILDWO
056 USGS
446 USGS | OD WD | AIRPORT 7 OBS
RIO GRANDE 34
CAPE MAY 42 OB
OYSTER LAB 4 O
CM CO PK 8 OBS | BS 1957 | 13
12
14
7
11 | 242- 257
172- 242
242- 252
195- 210
214- 230 | -12
-16
-2
-2
5 | 11/17
11/17
11/16
11/17
11/17 | -12 12/08
-11 12/06
-4 12/08
-2 12/01
4 12/01 | 0
5
-2
0
-1 | | *9-154
9-155
*9-159 | 385607 745
385932 744
385935 744
385830 745
390159 745 | 851 WILDWO
954 WILDWO
021 WILDWO | OD CLAM
OD WD | WEST CM 1 OBS
WWD 2
3-1971
WWD 35
RIO GRANDE 42 | 1957
1928
1971
1967
1979 | 7
10
5
8
15 | 283 - 293
293 - 354
311 - 331
249 - 360
250 | -19
1
-5
-2
-14 | 11/10
11/18
11/22
11/21
11/17 | -13 12/01
3 12/08
-3 12/08
-2 12/06
-12 12/06 | 6
2
2
0
2 | | *9-188 | 385841 745
385724 745
390218 745
390215 745
385946 745 | 243 BORDEN
609 CAPE M
440 CAPE M | IAY CO
IAY CO | 2
4
CAPE MAY F-35
CAPE MAY F-36
CAPE MAY C-1 | 1980
1979
1965
1965
1965 | 7
5
10
10
11 | 320 - 350
260 - 290
186 - 190
229 - 233
216 - 221 | -9
-17
NM
NM
NM | 11/22
11/16
NM
NM
NM | -5 12/06
-12 12/04
-6 12/08
-5 12/08
-8 12/08 | 4
5
NA
NA | | 9-273
*9-281 | 390226 745
390710 745 | 612 CAPE M
102 GARD L
134 SOIL C | IAY CO
IAY CO LIBRARY
K MOBILE HOMES
CONSRV SERVICE
CONSRV SERVICE | CAPE MAY F-44
LIBRARY 1024
GARDEN LK PK
BD-21CH
BD-20CH-1 | 1965
1982
1985
1967
1967 | 20
10
15
11
17 | 205 - 210
145 - 160
220 - 260
176 - 181
127 - 132 | MM
MM
MM
MM | NM
NM
MM
NM | -7 12/08
-13 12/01
-1 12/13
5 12/08
6 12/09 | NA
NA
NA
NA | | | 390749 744
390018 744 | | CONSRV SERVICE | BD-20CH-2
RIO GRANDE 39N | 1967
1986 | 17
5 | 201- 206
279- 357 | NM
NM | NM
NM | 4 12/08
-1 12/09 | NA
NA | ¹ Datum is sea level. Depth below land surface. ³ Well depth. ⁴ Revised from Eckel and Walker, 1986. Figure 4. Water-level hydrographs for observation wells screened in the confined Cohansey aquifer, Cape May County, New Jersey, 1983-89. Water levels near Stone Harbor and Sea Isle City, Cape May County, did not change significantly over the 5-year period. Head changes ranged from a rise of 3 ft to a decline of 2 ft. Water levels in south-central Cape May County declined 3 to 6 ft. Hydrographs of water levels in four observation wells screened in the Atlantic City 800-foot sand are shown in figure 5; well locations are shown on plate 1. Observation well 1-37 is located in the northern part of Atlantic City; well 1-180 is located near Absecon, Atlantic County; well 1-578 is located inland, near the Atlantic County-Cape May County border; and well 1-703 is located in Pomona, Atlantic County. The four hydrographs show long-term water-level declines that range from 7 to 14 ft. Seasonal water-level variations, which range from 8 to 35 ft, are affected by local ground-water withdrawals. The hydrograph for observation well 1-711, located 1.9 mi offshore from Atlantic City and screened in the Atlantic City 800-foot sand, shows annual declines in water levels of 20 to 25 ft. These declines coincide with ground-water withdrawals in the Atlantic City area that begin in late May or early June (fig. 6). Ground-water levels begin to recover when withdrawals are reduced in September. Water levels have remained relatively stable over the 3-year period of record from 1987 through 1989. #### Piney Point Aquifer #### Water Levels Water-level measurements for 34 wells screened in the Piney Point aquifer are listed in table 5. The number of wells in New Jersey in which water levels were measured, by county, is as follows: Atlantic, 4; Burlington, 4; Camden, 1; Cumberland, 7; and Ocean, 16. Water levels also were measured in two wells in Kent County, Delaware. The water levels in these wells were used to define the potentiometric surface shown on plate 2, though only 28 are plotted. Reported withdrawals from the Piney Point aquifer were greatest in Ocean and Atlantic Counties, 0.32 and 1.51 Mgal/d, respectively (table 1; pl. 2). Two cones of depression in coastal Ocean County (pl. 2) define the principal areas of ground-water withdrawal from the Piney Point aquifer in New Jersey. Water levels as low as 60 ft below sea level were measured in wells located southeast of Toms River. At the center of a small cone of depression at Barnegat Light, Ocean County, the water level was 34 ft below sea level. Water levels in observation wells 11-44 and 11-163 in northern Cumberland County, located about 12 mi from the nearest pumping center in Buena Borough (well 1-838), were 7 and 8 ft above sea level, respectively. Water levels were as low as 45 ft below sea level in southern Cumberland County (well 11-61). Water use in this area is mostly for domestic purposes, and withdrawals are not large enough to produce such low water levels. Large ground-water withdrawals are reported in the State of Delaware, however. The potentiometric contours in Cumberland County indicate that the hydraulic gradient is toward Delaware where extensive cones of depression are centered in Kent County (Leahy, 1979). Water levels in Kent County, Delaware, were as low as 132 ft below sea level. Table 4. Water-level data for wells screened in the Atlantic City 800-foot sand, 1983 and 1988 [AMER, American; CONV, Convalescent; E, East; ELEC, Electric; ft, feet; HBR, Harbor; INT, International; mo, month; MUA, Municipal Utility Authority; TWP, Township; USGS, U.S. Geological Survey; WC, Water Company; WD, Water Department; WW, Water Works; --, missing data, NM, not measured, NA, not applicable; wells marked with an asterisk are shown on plate 1] | Well
number | Locati
Lati-
tude | ion
Longi
tude | -
Owner | | | | Screened interval 2 | Water le
1983
Alti:
tude Date
(ft)(mo/day) | 1988
Alti-
tude ¹ Date | Change in water level (1983-88) (ft) | |--|----------------------------|--|--|---|--------------------------------------|---------------------------|---|---|--|--------------------------------------| | *1- 15
1- 25
*1- 37
*1- 39
1- 40 | 392128
392151
392329 | 742557
742459
742348 | PRESIDENT HOTEL CLARIDGE HOTEL ATLANTIC CITY WD BRIGANTINE WD BRIGANTINE WD | PRESIDENT
CLARIDGE
GALEN HALL OBS
NEW 4
BAYSHORE 3 | 1955
1930
1904
1966
1952 | 10
8
10
10 | 779 - 831
785 - 845
782 - 837
733 - 788
697 - 765 | NM NM
NM NM
-70 11/29
-65 11/09
-63 11/09 | -77 11/30
-58 11/30
-80 11/29
-74 12/01
-71 12/08 | NA
NA
-10
-9
-8 | | 1- 41
*1- 42
1-116
*1-117
*1-180 | 392456
3393212 | 742121
743829
743832 | BRIGANTINE WD
BRIGANTINE WD
EGG HBR WW
EGG HBR WW
USGS | BRIG WD 1
BWD 2-14TH ST
EGG HARBOR 3
OW41 5
OCEANVLLE 1 OBS | 1925
1929
1942
1964
1959 | 9
12
40
40
27 | 736- 806
718- 778
342- 394
350- 432
560- 570 | -54 11/09
-44 11/09
21 12/07
21 12/07
-32 11/29 | -57 12/01
-46 12/01
18 11/30
19 11/30
-39 11/29 | | | *1-367
1-370
1-372
1-375
1-376 | 391928
391932
392002 | 743055
743059
743012 | LONGPORT WD MARGATE CITY WD MARGATE CITY WD MARGATE CITY WD MARGATE CITY WD | LONGPORT 2
MCWD 6
MCWD 7
MCWD 4
MCWD 5 | 1947
1962
1963
1955
1958 | 10
10
5
10
10 | 750- 800
748- 798
760- 800
745- 795
741- 791 | -68 11/28
NM NM
-75 11/28
NM NM
-74 11/29 | -75 12/02
-84 12/01
-91 12/01
-81 12/01
-81 12/01 | -7
NA
-16
NA
-7 | | 1-568
*1-578
1-593
1-598
*1-600 | 391826
392018
392030 | 743709
742945
742852 | ATLANTIC CITY MUA
USGS
VENTNOR CITY WD
VENTNOR CITY WD
VENTNOR CITY WD | ACMUA 15
JOBS POINT OBS
VCWD 10
VCWD 9
VCWD 8 | 1961
1959
1965
1965
1931 | 8
10
9
8
8 | 583 - 633
670 - 680
740 - 790
740 - 800
750 - 810 | -48 11/14
-51 11/14
-75 11/28
-76 11/29
-73 11/28 | -58 12/08
-55 11/29
-96 12/07
-81 12/08
-79 12/08 | -10
-4
-21
-5
-6 | | 1-648
*1-650
1-680
1-682
*1-683 | 392651
392120
392134 | 744254
742606
742521 | BALLY PARK PLACE
HAMILTON TWP WD
CARNIVAL CLUB
RESORTS INT
BRIGANTINE WD | BALLY 1
TEST 2-73
2
1-1980
NEW 5 | 1979
1910
1980
1980 | 7
20
8
8
8 | 775 - 835
4380
773 - 835
4840
725 - 775 | -74 11/16
18 ⁵ 02/14
NM NM
-72 11/16
NM NM | -80 11/30
14 11/21
-76 11/30
-80 11/30
-64 12/01 | -6
-4
NA
-8
NA | | *1-700
*1-702
*1-703
*1-704
*1-706 | 392032
392639
392343 | 744604
743008
743232
743733
743130 | USGS
USGS
USGS | ACGS 4 BURKE AV TW OBS FAA POMONA OBS EGG HARBOR HS STKIN ST COLL | 1984
1985
1985
1985
1985 | 40
5
38
51
40 | 479- 539
740- 750
560- 570
596- 606
520- 530 | NM NM NM NM NM NM NM NM | 17 11/28
-87 12/01
-45 11/29
-38 11/22
-25 11/29 | NA
NA
NA
NA | | *1-710
*1-711
*9- 2
*9- 4
9- 5 | 391955
390420
390528 | 744338 | USGS | ACOW 2
ACOW 1 OBS
AVALON WD 7-71
AVALON WD 6
AVALON WD 8-76 |
1985
1985
1971
1968
1976 | 0
0
5
10
8 | 973-1003
820- 850
821- 861
880- 920
784- 839 | NM NM
NM NM
-40 11/15
-42 11/15
-48 11/15 | -63 ⁶ 01/31
-77 11/29
-46 12/07
-40 12/07
-40 12/07 | NA
NA
-6
2
8 | | *9- 8
*9- 92
*9-100
*9-106
*9-108 | 390525
390647
391343 | 744851
744438
743755 | AVALON WD
NJ AMER WC
MIDDLE TWP WD
NJ AMER WC
NJ AMER WC | AVALON WD 3
NEPTUNUS 7
AVALON M WW 1
SHORE DIV 7
SHORE DIV 14 | 1930
1967
1963
1924
1970 | 10
17
5
8
7 | 845 - 925
681 - 791
763 - 815
760 - 810
774 - 840 | -38 11/15
-31 12/07
-42 11/18
-46 12/07
-57 11/29 | -41 12/07
-34 12/13
-42 12/14
-51 12/13
-58 12/13 | -3
-3
0
-5
-1 | | 9-109
*9-110
9-116
9-117
9-121 | 391604
391638
391642 | 743539
743451
743447 | NJ AMER WC
NJ AMER WC
NJ AMER WC
NJ AMER WC
NJ AMER WC | SHORE DIV 9
SHORE DIV 12
SHORE DIV 8
SHORE DIV 10
SHORE DIV 4 | 1946
1965
1937
1950
1910 | 8
7
7
5
8 | 749- 809
759- 814
760- 810
746- 798
⁴ 825 | -55 11/29
-53 11/13
-62 11/30
NM NM
-59 11/30 | -57 12/14
-60 12/14
-64 12/13
-69 12/13
-66 12/13 | -2
-7
-2
NA
-7 | | 9-122
9-124
*9-125
*9-126
*9-127 | 391712
391726
390747 | 743340
743352
744241 | NJ AMER WC
NJ AMER WC
NJ AMER WC
SEA ISLE CITY WD
SEA ISLE CITY WD | SHORE DIV 5
SHORE DIV 13
SHORE DIV 11
SICWD 5
SICWD 4 | 1923
1970
1962
1957
1954 | 6
8
10
7
7 | ⁴ 825
774 - 840
⁴ 800
736 - 802
742 - 830 | NM NM
-70 11/30
NM NM
-44 11/17
-44 11/17 | -68 12/13
-70 12/13
-66 12/13
-46 12/05
-44 12/05 | NA
0
NA
-2
0 | | *9-129
*9-132
9-135
*9-136
*9-144 | 390301
390323
391152 | 744545
744525
743927 | SEA ISLE CITY WD
STONE HBR WD
STONE HBR WD
CORSONS INLET WC
ATLANTIC CITY ELEC | SICWD 2
SHWD 4
SHWD 3
CIWC 1
ACEC 5 | 1926
1955
1949
1904
1975 | 7
10
9
7
9 | 801 - 861
830 - 880
838 - 878
802 - 834
650 - 690 | -40 11/17
-31 11/14
-34 11/15
-45 11/29
-54 11/10 | -37 12/05
-32 12/07
-31 12/07
-45 12/13
-50 12/21 | 3
-1
3
0
4 | | 9-148
*9-161
9-166
9-173
*9-185 | 390704
390351 | 744750
744504
744532 | ATLANTIC CITY ELEC
E SHORE CONV HOME
STONE HARBOR WD
STONE HARBOR WD
USGS | ACEC 3-LAYNE 4
1
SHWD 5
SHWD 6
MACNAMARA W A | 1964
1983
1976
1981
1985 | 9
16
7
10
15 | 645 - 675
639 - 654
820 - 860
810 - 860
640 - 650 | -55 11/10
-26 11/17
-42 11/15
-32 11/15
NM NM | -58 12/21
-32 12/06
-41 12/07
-31 12/07
-35 11/29 | -3
-6
1
1
NA | | *9-296
*29- 9
29- 12
*29-111 | 393346
393346 | 741430
741434 | NJ AMER WC
BEACH HAVEN WD
BEACH HAVEN WD
HARVEY CEDARS WD | HAND AVE 8
BHWD 8
BHWD 7
HCWD 4 | 1986
1957
1940
1968 | 20
5
5
9 | 682- 812
572- 656
572- 665
465- 500 | NM NM
-30 11/05
-25 11/05
NM NM | -27 12/10
-31 11/28
-30 11/29
-23 11/28 | NA
- 1
- 5
NA | Table 4. Water-level data for wells screened in the Atlantic City 800-foot sand, 1983 and 1988--Continued | Well
number | <u>Locati</u>
Lati·
tude | on
Longi
tude | -
Owner | Local
number | Year
drilled | Altitude
of land
surface ¹
d (ft) | Screened interval 2 | Water 1983 Alti- tude¹ Date (ft)(mo/day | 1988
Alti-
tude 1 | Date | Change in
water level
(1983-88)
(ft) | |--|--------------------------------|----------------------------|--|--|---|---|---|---|-------------------------|---|---| | *29-112
*29-457
*29-464
*29-544
29-549 | 393510
393428
393839 | 741327
742202 | HARVEY CEDARS WD
LONG BEACH WC
LITTLE EGG HRBR MUA
SHIP BOTTOM WD
SHIP BOTTOM WD | HCWD 3
TERRACE 3
MYSTIC 2
SBWD 4
SBWD 5 | 1956
1970
1963
1953
1974 | 5
8
3 19
5
5 | 451 - 493
551 - 650
485 - 542
536 - 578
528 - 588 | -36 11/03
-27 11/08
3-17 11/0
-33 11/04
NM NM | 3 -27
5 -23
-29 | 11/28
11/29
11/30
11/28
12/14 | 12
0
-6
4
NA | | *29-557
29-559
29-560
*29-561
*29-565 | 393948 | 741022
741006
740954 | SURF CITY WD | STAFFORD 3
SCWD 3
SCWD 4
SCWD 5
TMUA 4(OW1) | 1965
1947
1964
1970
1964 | 8
5
10
10 | 385 - 428
516 - 557
514 - 554
520 - 562
463 - 497 | 16 11/14
-27 11/04
-31 11/04
-28 11/04
-7 10/28 | -23
-26
-24 | 11/29
11/28
11/28
11/28
11/28 | 0
4
5
4
-1 | | 29-597
*29-598
29-774
*29-936
29-939 | 394201
394042
393724 | 741212
741411
741151 | TUCKERTON MUA
AMER T & T
STAFFORD TWP MUA
LONG BEACH WC
LONG BEACH WC | TMUA 5(OW2)
TEST 1960
STAFFORD 4
BRANT BEACH 4
TERRACE 4 | ³ 1978

1982
1988
1987 | 25
5
8
9
8 | 400- 500
 | -6 10/2
NM NM
20 11/14
NM NM
NM NM | -18
17
-25 | 12/09
11/29
11/28
11/29
11/29 | 3
NA
-3
NA
NA | ¹ Datum is sea level. $^{^{2}\,}$ Depth below land surface. $^{^{3}}$ Revised from Eckel and Walker, 1986. ⁴ Well depth. ⁵ Water level measured in 1984. ⁶ Water level measured in 1989. Figure 5. Water-level hydrographs for observation wells screened in the Atlantic City 800-foot sand, 1983-89. Figure 6. Water-level hydrograph for an offshore observation well screened in the Atlantic City 800-foot sand, 1987-88. The highest water levels were measured in western Ocean and eastern Burlington Counties at the northernmost extent of the aquifer (pl. 2). Water levels were as much as 118 ft above sea level. Many of the potentiometric contours for areas outside Ocean County are approximations because water-level data are sparse. #### Water-Level Fluctuations Water-level changes in 27 wells were calculated for the 5-year period. Water levels rose in 6 wells, declined in 15 wells, and were unchanged in 6 wells. The greatest water-level decline occurred in Seaside Park, Ocean County; heads declined as much as 26 ft from 1983 to 1988. The potentiometric surfaces indicate the cone of depression has expanded to the south since 1983 (Eckel and Walker, 1983, pl. 6). This expansion probably resulted from changes in the pattern of ground-water withdrawals from well fields supplying this area. Water levels in Burlington and Atlantic Counties remained relatively constant over the 5-year period (table 1). Water levels in southern Atlantic County declined to below sea level, probably as a result of major ground-water withdrawals in Kent County, Delaware, and public-supply withdrawals from the Piney Point aquifer in Buena Borough. Water levels in Cumberland County declined 5 to 10 ft, in part because of ground-water withdrawals in Delaware. Hydrographs for two observation wells screened in the Piney Point aquifer are shown in figure 7; well locations are shown on plate 2. Well 11-96 is located in south-central Cumberland County. The hydrograph shows a water-level decline of about 8 ft during the 5-year period. The decline probably is attributable to ground-water withdrawals in Kent County, Delaware, as reported by Eckel and Walker (1986, p. 43). Water levels in observation well 29-585, located in eastern Ocean County between two pumping centers, fluctuated about 1 ft seasonally with a slight downward trend during 1983-89. #### <u>Vincentown Aquifer</u> The Vincentown aquifer was included in the 1988 study to expand the water-level data for the Coastal Plain. Within its outcrop area and extending 8 to 10 mi downdip from the outcrop, the Vincentown aquifer has been tapped for local public-supply, domestic, and industrial use. Wells in Howell and Jackson Townships, Monmouth County, are used for public supply, whereas wells near the outcrop area in Monmouth and Ocean Counties are used primarily for domestic water supplies. In Salem County, the Vincentown aquifer is used for public supply as well as domestic purposes. Table 5. Water-level data for wells screened in the Piney Point aguifer, 1983 and 1988 [AM, American; DEL, Delaware; ft, feet; HGTS, Heights; ISL, Island; LT, Light; mo, month; MUA, Municipal Utility Authority; NJ, New Jersey; TWP, Township; USGS, U.S. Geological Survey; VIL ASSOC, Village Associates; WC, Water Company; WD, Water Department; --, missing data; NM, not measured; NA, not applicable; wells marked with an asterisk are shown on plate 2] | Well
number | Locat
Lati-
r tude | ion
Longi
tude | -
Owner | Local
number | Year
drilled | | Screened
interval ²
(ft) | Water le
1983
Alti-
tude ¹ Date
(ft)(mo/day) | 1988
Alti-
tude ¹ Date | | |---|----------------------------|----------------------------|---|--|--|------------------------------|---|--
---|-----------------------------| | *1-270
*1-713
*1-834
*1-836
*5-407 | 392902
392017 | 745051
743002
745617 | USGS
BUENA BORO MUA | 1958 WELL
MIZPAH DEEP
MARGATE FH1 OBS
BBMUA 2
ATSION 1 OBS | 1958
1985
1988
1985
1963 | 90
100
5
118
47 | 390- 410
525- 535
970- 991
405- 455
240- 260 | 30 11/04
NM NM
NM NM
NM NM
51 11/10 | 30 11/29
-2 11/28
-28 11/29
-8 12/01
51 12/09 | O
NA
NA
NA
O | | *5-488
*5-676
*5-800
*7-572
*11-44 | 394914
394732
394100 | 742546
744526
745035 | STATE OF NJ
USGS
SHAMONG TWP
ELMTOWNE VIL ASSOC
CUMBERLAND COUNTY | BATSTO 2
COYLE AIRPT OBS
1
1
VOCA SCH 3 OBS | 1972
3 1961
1978
3 1979
1972 | 35
199
85
110
82 | 419- 449
530- 540
200- 210
304- 314
361- 376 | 48 11/09
119 10/20
73 11/04
62 11/10
12 11/15 | 48 11/27
118 11/09
72 11/04
57 11/17
7 11/16 | 0
-1
-1
-5
-5 | | *11- 61
*11- 92
*11- 96
*11-163 | 391746
391829
392526 | 751510
751208
750643 | GRIFFITH, MAE
BAY PT ROD GUN
CUMBERLAND COUNTY
CUMBERLAND COUNTY
SOBUSIAK, WALTER | SEA BREEZE
BAY POINT 2
JONES ISL 2 OBS
FAIR GRDS 3 OBS
2 | | 4
5
10
80
4 | 281 - 354
397 - 417
365 - 375
463 - 473
300 - 357 | -35 11/16
-28 11/14
-20 11/09
13 11/15
-35 11/15 | -45 11/22
-37 11/22
-28 11/22
-8 11/23
-44 11/22 | -10
-9
-8
-5
-9 | | *11-349
*29- 2
29- 4
*29- 18
*29- 23 | 394522
394524
394829 | 740636
740632
740535 | VANDVELT, THOMAS
BARNEGAT LT WD
BARNEGAT LT WD
USGS
SHORE WC | BEACH FRONT DO
BLWD 3
BLWD 2
ISL BCH 2 OBS
SWC 2 | M 1979
1969
1954
1962
1973 | 5
7
7
9
7 | 380- 410
597- 654
593- 646
468- 474
490- 527 | -28 11/21
-40 11/03
NM NM
0 401/31
-42 401/31 | -35 11/22
-33 11/28
-33 11/28
0 10/28
-60 501/04 | -7
7
NA
0
-18 | | *29-115
29-117
*29-425
*29-537
29-541 | 395641
395322
395636 | 740853
742252
740439 | ISL HGTS WD
ISL HGTS WD
USGS
SEASIDE HGTS WD
SEASIDE PARK WD | IHWD 8
IHWD 7
WEBBS MLS 2 OBS
SHWD 2
SPWD 2 | 1963
1910
5 1962
1941
1932 | 12
3
128
4
10 | 115 - 292
299 - 339
6348
400 - 430
6525 | 6 10/26
-1 10/24
121 ⁴ 04/03
-35 10/20
-30 ⁴ 01/31 | 5 11/04
-1 11/04
118 11/01
-30 11/30
-56 11/30 | -1
0
-3
5
-26 | | *29-582
*29-585
*29-607
*29-616
*29-739 | 395028
394454
395528 | 741044
740655
740820 | SEASIDE PARK WD
STATE OF NJ
BARNEGAT LT WD
OCEAN GATE BORO WD
OCEAN CO COLLEGE | 4-R
DOE-FRKD R OBS
BLWD 4
OGB 2
REC FIELD 1 | 1977
1978
1980
1937
1970 | 12
15
5
7
20 | 435 - 485
412 - 422
597 - 662
340 - 360
200 - 220 | -75 ⁴ 01/31
15 ⁴ 03/08
-41 11/03
-6 10/21
13 10/26 | -43 ⁵ 01/04
15 10/28
-34 11/28
-2 11/09
11 10/27 | 32
0
7
4
-2 | | 29-808
29-809
*Id55-01
*Jd25-09 | 395527
391026 | 740826
753049 | SEASIDE PARK WD
OCEAN GATE BORO WD
CITY OF DOVER
USGS (DEL) | SPWD 7
OGBWD 4
WHITE OAK RD
ROOSEVELT AV 1 | 1979
1984
1965 | 5
10
20
26 | 395 - 475
330 - 370
329 - 349
400 - 440 | | -30 11/30
+6 11/09
-132 11/15
-129 11/15 | 28
NA
NA | Datum is sea level. ² Depth below land surface. ³ Revised from Eckel and Walker (1986). ⁴ Water level measured in 1984. ⁵ Water level measured in 1989. ⁶ Well depth. Figure 7. Water-level hydrographs for observation wells screened in the Piney Point aquifer, 1983-89. #### Water Levels Water-level measurements for 15 wells screened in the Vincentown aquifer are listed in table 6. The number of wells in New Jersey in which water levels were measured, by county, is as follows: Monmouth, 7; Ocean, 5; and Salem, 3. Water levels in these wells were used to define the potentiometric surface shown on plate 4, though only 14 wells are plotted. In 1988, 0.35 Mgal/d was withdrawn through public supply wells in Ocean County, compared to 0.07 Mgal/d in Monmouth County (table 1). The outcrop area of the Vincentown aquifer trends northeast-southwest through the center of Monmouth County. Water levels in the county ranged from 27 to 91 ft above sea level; the highest water levels were measured in areas of high elevation or near areas of recharge (pl. 3). The lowest water levels were measured in wells far from the outcrop areas and at low elevations near the Atlantic Ocean. The outcrop area of the Vincentown aquifer in Ocean County is a thin strip that trends northeast-southwest along the northwestern boundary of the county. Water levels measured during September 1988 through February 1989 ranged from 75 to 129 ft above sea level. Water levels in wells in Salem County owned by the Salem City Water Department ranged from 1 ft above sea level to 9 ft below sea level. The water level in well 33-41 was 5 ft below sea level. #### Water-Level Fluctuations The water-level change was calculated for only one well (29-139) because the Vincentown aquifer was not included in the 1983 study. The water level in this USGS observation well did not change. A hydrograph for observation well 29-139 screened in the Vincentown aquifer is shown in figure 8, and the well location is shown on plate 3. This well is located in western Ocean County. Seasonal water levels varied 1 to 2 ft. The hydrograph indicates that water levels varied little over the 5-year period. #### Wenonah-Mount Laurel Aquifer #### Water Levels Water-level measurements for 138 wells screened in the Wenonah-Mount Laurel aquifer are listed in table 7. The number of wells in New Jersey in which water levels were measured, by county, is as follows: Burlington, 31; Camden, 18; Cumberland, 1; Gloucester, 14; Monmouth, 32; Ocean, 17; and Salem, 24. Water levels also were measured in one well in New Castle County, Delaware. The water levels in these wells were used to define the potentiometric surface shown on plate 4, though only 106 wells are plotted. Withdrawals from the Wenonah-Mount Laurel aquifer were greatest in Burlington, Camden, Monmouth, and Salem Counties (table 1; pl. 4). Table 6. Water-level data for wells screened in the Vincentown aguifer, 1983 and 1988 [CH, Church; ft, feet; GC, Golf Course; INC, Incorporated; LIT LEAG, Little League; mo, month; MUA, Municipal Utility Authority; PK, Park; SYS, System; TWP, Township; TP, Trailer Park; USGS, U.S. Geological Survey; WC, Water Company; WD, Water Department; --, missing data; NM, not measured; NA, not applicable; wells marked with an asterisk are shown on plate 3] | Location
Well Lati- Longi-
number tude tude Owner | Local Year | Altitude
of land
r surface ¹
lled (ft) | Screened
interval ²
(ft) | Water le
1983
Alti-
tude ¹ Date
(ft)(mo/day) | 1988 | Change in
water level
(1983-88)
(ft) | |--|---|--|---|---|---|---| | *25- 51 401507 740117 HOLLYWOOD GC
*25-511 400953 741405 ALDRICH WC
*25-636 401105 741202 USGS
*25-685 401708 740754 BAILEY, R E
*25-688 401326 740834 CARY CHEMICALS | ALDRICH W C 3A 19
HOWELL TWP 2 OBS 19
OVERBROOK FM 1 19 | 954 50
971 115
987 112
984 80
985 110 | 124- 166
140- 195
85- 95
68- 76
11- 23 | NM MM MM MM MM MM MM MM MM MM | 27 10/20
90 10/25
59 10/20
61 10/21
96 10/26 | NA
NA
NA
NA | | 25-691 401104 741109 MONMOUTH CO PK SYS
*25-707 401056 741323 HOWELL TWP
*29-139 400414 742702 USGS
*29-658 400700 741846 JACKSON BAPTIST CH
*29-698 400616 742334 INDIAN ROCK TP | HOWELL TWP MW-11 19
COLL MILLS 2 OBS 19
1 | 986 50
984 114
964 136
977 115
979 130 | 5- 25
66- 68
161- 171
202- 215
120- 132 | NM NM
NM NM
129 10/27
NM NM
NM NM | 43 10/24
91 ³ 02/22
129 10/27
96 10/27
119 10/28 | NA
NA
O
NA
NA | | *29-916 400850 741646 HOLBROOK LIT LEAG
*29-917 400850 741516 JACKSON TWP MUA
*33- 41 393016 752621 BURRELL, E
*33-240 393253 752425 SALEM CITY WD
*33-248 393339 752718 SALEM CITY WD | JACKSON MUA 11 19
EB 1 19
SWD 3 19 | 983 125
986 75
959 10
900 7
965 1 | 139- 155
126- 186
114- 165
4 140
20- 24 | NM NM NM NM NM NM NM NM | 106 10/27
75 10/25
-5 301/10
1 301/05
-9 301/05 | NA
NA
NA
NA | $^{^{1}}$ Datum is sea level. Depth below land surface. ³ Water level measured in 1989. ⁴ Well depth. Figure 8. Water-level hydrograph for an observation well screened in the Vincentown aquifer, 1983-89. The deepest and most extensive cone of depression in the Wenonah-Mount Laurel aquifer is in northeastern Ocean and southeastern Monmouth Counties (pl. 4). The deepest water level, 218 ft below sea level, was measured in well 25-391 in the Spring Lake Heights area. Water levels in the areas extending from Avon-by-the-Sea in the north to Point Pleasant in the south ranged from 155 ft to 180 ft below sea level. This cone coincides with the major cone of depression in the Englishtown aquifer system (pl. 5). The similarity of head distribution and the absence of significant local groundwater withdrawals from the Wenonah-Mount Laurel aquifer give
validity to the vertical hydraulic connection between the two aquifers noted by Walker (1983, p. 37). A less prominent and more localized cone of depression with water levels as low as 62 ft below sea level (well 5-367) is centered in northeastern Burlington County. A localized cone of depression with water levels more than 40 ft below sea level formed in northern Camden County between 1983 and 1988. This cone probably is the result of increased ground-water withdrawals for local industry and public supply. The highest water levels were measured in wells along the outcrop areas that, for the most part, coincide with the topographic highs in northern Burlington and Monmouth Counties. Water levels were more than 120 ft above sea level in Burlington County and 140 ft in western Monmouth County. #### Water-Level Fluctuations Water-level changes in 94 wells over the 5-year period were calculated. Water levels rose in 13 wells, declined in 77 wells, and were unchanged in 4 wells. Regional ground-water withdrawals increased during 1983-88 as indicated by the increase in the number of wells in which water levels declined (Eckel and Walker, 1986, table 7). Low transmissivities in the Wenonah-Mount Laurel aquifer cause water levels to recover slowly (after high-capacity pumps are shut down). Average time to obtain 90 to 95 percent recovery of static water-level conditions is usually 3 to 5 hours. Water-level declines were greatest in the Spring Lake Heights area of Monmouth County; the maximum water-level decline over the 5-year period was 52 ft in well 25-391. Such a large decline may be explained by one, or any combination, of these factors: (1) increased ground-water withdrawals in the area; (2) increased vertical leakage to, and withdrawals from, the underlying Englishtown aquifer system; (3) slower than expected recovery time for production wells in the area of Spring Lake Heights; and (4) inaccurate airline measurements and difficulty in duplicating water-level (tape) measurements as a result of well-construction characteristics. In Burlington County, water levels declined as much as 31 ft in wells 5-464 and 5-720. Local ground-water pumping at the time of each water measurement played a major role in this large decline (L.A. Sioma, U.S. Geological Survey, oral commun., 1988). In general, water-level declines in the county ranged from 1 to 13 ft. Water levels in Camden County declined as much as 29 ft, and declines of 20 ft or more were common over much of the county. Water-level changes in wells adjacent to the outcrop area in Camden County ranged from 5-ft declines to no change for the 5-year period. Water-level data for 1983 and 1988 are sparse for Gloucester County. Water levels probably remained relatively stable over the 5-year period because the Wenonah-Mount Laurel aquifer has remained undeveloped with respect to large-scale, public-supply withdrawals. In Salem County at Artificial Island, water levels rose as much as 11 ft. These increases probably were caused by reduced local withdrawals and do not reflect regional trends. Water levels were unchanged or declined 2 to 3 ft over the 5-year period in wells located far from pumping centers. Hydrographs for five wells screened in the Wenonah-Mount Laurel aquifer are shown in figures 9A and 9B, and well locations are shown on plate 4. Water levels in observation well 7-478, located about 5 mi from local pumping centers in south-central Camden County, indicate a downward trend. The hydrograph for well 7-478 shows that static head declined more than 18 ft over the 5-year period. The decline probably is the result of an increase in local ground-water withdrawals from the aquifer. Water levels in observation wells 25-353, 25-486, and 29-140 are affected by ground-water withdrawals. The water-level hydrograph for well 25-353 shows a 3-ft decrease in head from 1984 through 1988 (table 7). The water-level hydrograph shows seasonal variations of as much as 4 ft. Observation well 25-486 is located in southeastern Monmouth County along the Atlantic Coast near the center of the cone of depression. Seasonal water-level variations are about 12 ft. Well 29-140 is located in northwestern Ocean County about 6 mi east of the outcrop. Water levels rose about 3 ft from 1983 to 1985, declined throughout 1985, and remained relatively unchanged from 1986 through 1988. Heads in the underlying Englishtown aquifer system are 20 ft lower than those in the Wenonah-Mount Laurel aquifer in southeastern Monmouth County. (See tables 9 and 10 for wells 25-429 and 25-426, respectively.) Similar patterns can be seen in the hydrographs for well 29-140 (fig. 9A), screened in the Wenonah-Mount Laurel aquifer, and well 29-138 (fig. 11, farther on), which is at the same location but screened in the Englishtown aquifer system. The difference in head between the aquifers indicates significant downward vertical leakage through the confining layer between these aquifers (Nemickas, 1976; Nichols, 1977a). Observation well 33-252 is screened in the shallow area of the confined part of the Wenonah-Mount Laurel aquifer at Salem, Salem County. The hydrograph shows little change in water levels over the 5-year period (fig. 9B). Seasonal water levels vary as much as 2.5 ft. #### Englishtown Aquifer System #### Water Levels Water-level measurements for 89 wells screened in the Englishtown aquifer system are listed in table 8. The number of wells in New Jersey in which water levels were measured, by county, is as follows: Burlington, 9; Table 7. Water-level data for wells screened in the Wenonah-Mount Laurel aquifer, 1983 and 1988 [AMER, America; BD ED, Board of Education; CHP, Chapel; CHEM, Chemical; CH, Church; COMP, Company; CORP, Corporation; D, Domestic; DEL, Delaware; E-G, Electric-Gas; ENG, Engineering; ft, feet; FP, Food Production; HT, Heights; INC, Incorporated; LK, Lake; MUA, mo, month; Municipal Utility Authority; NJ, New Jersey; REST, Restaurant; SCH, School; TC, Treatment Center; TWP, Township; USGS, U.S. Geological Survey; UNIV, University; VIL, Village; VOC, Vocational; WC, Water Company; WD, Water Department; --, missing data; NM, not measured; NA, not applicable; wells marked with an asterisk are shown in plate 4] | | Altitude | | | | | Water le | 1988 Change in | | | | |--|---|----------------------------|--|--|--------------------------------------|--|--|--|---|----------------------------------| | Well
number | Locati
Lati-
tude | on
Longi-
tude | | | | of land
surface ¹ | Screened
interval ²
(ft) | Alti-
tude ¹ Date | | water level
(1983-88)
(ft) | | *5-245
*5-247
*5-257
5-352
*5-354 | 395145
395516
395801 | 745111
745103
744120 | MEDFORD TWP WD MEDFORD TWP WD JOHNSON, W E JR PEMBERTON WD SUNBURY VILLAGE | MTWD 4/5
MTWD 2
JOHNSON NEW
PBWD 3
SVWC 1 | 1950
1950
1965
1968
1953 | 57
52
80
62
62 | 230 - 252
180 - 200
3 90
132 - 163
178 - 198 | 30 11/03
NM NM
25 11/02
43 10/31
39 11/03 | 19 11/07
24 11/07
27 10/25
39 10/31
36 11/04 | -11
NA
2
-4
-3 | | *5-355
*5-359
*5-365
*5-366
5-367 | 395727
395752
395755 | 744118
743452
743239 | PEMBERTON WD LAKE VALLEY WC PEMBRTON TWP WD PEMBRTON TWP WD PEMBRTON TWP WD | PBWD 1
LVWC 1
PTWD 4
PTWD 4 INCH OB
PTWD 6 | 1939
1967
1960
1972
1972 | 81
70
93
90
90 | 155 - 185
181 - 242
290 - 330
301 - 323
308 - 338 | 38 10/31
35 11/07
-5 11/02
-48 11/02
NM NM | 38 10/31
37 10/31
-13 11/03
-61 11/03
-62 11/03 | 0
2
-8
-13
NA | | 5-368
*5-389
*5-427
5-428
*5-430 | 395958
395330
395342 | 743933
744205
744253 | PEMBRTON TWP WD PEMBERTON TWP SCH HAMPTON LAKE WC HAMPTON LAKE WC VINCENTOWN WC | PTWD 7
HIGH SCH 1
HLWC 2
HLWC 1
VINCENTOWN | 1972
1959
1971
1956
1923 | 90
80
70
49
40 | 300- 332
140- 150
260- 348
247- 268
3 153 | NM NM
64 11/04
-8 10/31
9 10/31
27 11/02 | -59 11/03
63 11/01
-13 11/01
4 11/01
25 11/01 | NA
-1
-5
-5
-2 | | 5-464
*5-695
*5-720
*5-724
*5-725 | 395328
395112
395413 | 743720
744535
744231 | ALLENWOOD MOBEST
SUNY PINE CONT
ALLENWOOD MOBEST
HAMPTON LAKE WC
WRIGHTSTOWN MUA | TRAILER PARK 1
TEST HOLE 1-74
ALLEN 2
HLWC 3
WMUA 2 | | ⁴ 120
111
125
43
⁴ 145 | ³ 381
428- 496
³ 410
199- 275
142- 162 | 44 11/04
27 12/29
22 11/04
15 10/31
4126 10/26 | -27 11/09
24 11/14
- 8 11/15
6 11/01
125 10/27 | -31
-3
-30
-9
-1 | | *5-1004
5-1022 | ⁴ 395829
395801
400232 | 743503
744344
743700 | WHITE J J COMP
DEBORAH HOSP
LAKE VALLEY WC
SPARTAN VILLAGE
STEVENSON SUPPLY | DOMEST 66
3
LVWC-2
SPARTAN 1-1965
STEVENSON SUPP | | 100
110
65
147
57 | 3 456
285 - 315
209 - 254
130 - 150
137 - 142 | -13 11/15
0 11/15
NM NM
NM NM | -21 11/04
-8 11/04
10 11/02
128 10/27
34 11/03 | -8
-8
NA
NA | | *5-1080
*5-1082
*5-1086 | 395353
395941
395753 | 745112
744720
743706 | HADDON HOUSE FP
HADDON HOUSE FP
TIDSWELL III, B
THOMPSON, STEPHAN
RED LION FAITH CHP | HADDON HSE DOM
HADDON HSE OFO
TIDSWELL DOM
THOMPSON DOM
RED LION DOM | | 65
65
35
55
55 | 101- 129
99-
130
82- 92
242- 247
227- 232 | NM NM NM NM NM NM NM NM | 55 11/06
55 11/06
9 11/04
6 11/04
11 11/03 | NA
NA
NA
NA | | *5-1090
*7- 17
*7- 22
*7-118
7-180 | 394705
394738
395229 | 745444
745614
745712 | MONROE, GEORGINA
OWENS CORNING
BERLIN WD
NJ AMER WC
US AIR FORCE | NEW MONROE DOM
1
BWD 8
HUTTON HL 2 OB
RADAR 2 | 1951
1952 | 46
160
147
1 158
193 | 165 - 175
410 - 440
310 - 360
137 - 147
280 - 310 | NM NM
NM NM
31 502/14
470 12/09
62 11/09 | -24 11/28
-41 11/14
11 11/15
68 11/18
39 11/04 | NA
NA
- 20
- 2
- 23 | | 7-181
*7-228
7-305
7-307
*7-308 | 394556
394927
394928 | 745835
750024
750021 | US AIR FORCE
CAMDEN CO BD ED
NJ AMER WC
NJ AMER WC
NJ AMER WC | RADAR 1
VOC&TECH H S 1
LAUREL 1
LAUREL 8
LAUREL 10 | 1959
1967
1918
1920
1923 | 191
145
77
77
77 | ³ 290
325 - 400
³ 120
105 - 125
³ 126 | 56 11/09
37 11/10
NM NM
58 11/16
58 11/16 | 41 11/04
8 11/03
54 11/02
58 11/02
56 11/02 | - 15
- 29
NA
0
- 2 | | 7-391
*7-401
*7-414
*7-421
*7-449 | 394722
394922
395109 | 745810
745633
745715 | L CAMDEN CO REG
PINE VALLEY GC
NJ AMER WC
RADIO CORP OF AMER
WINSLOW WC | OVERBROOK HS 1
GOLF CLUB
ELM TREE 26
RCA
WINSLOW TWP 5 | 1971
1955
1960
1955
1965 | 160
85
150
175
159 | 315- ₃ 335
3267
237- 275
220- 234
420- 460 | 29 11/10
43 11/21
51 11/09
91 11/01
19 11/04 | 8 11/15
23 11/01
36 11/04
89 11/16
-4 11/21 | -21
-20
-15
-2
-23 | | *7-478
*7-512
7-513
*7-526
*11- 72 | 394522
394532
394932 | 745623
745847 | USGS JOHNS-MANVILLE JOHNS-MANVILLE LINDENNWALD B MUA CUMBERLAND COUNTY | NEW BKLYN 3 OF
TEST HOLE 1
3
SEWAGE PL2
SHEPPARDS 1 | 1961
1963
1974
1972
1972 | ⁴ 111
160
170
78
⁴ 32 | 520- ₃ 530
3890
410- 460
138- 158
603- 623 | 439 11/08
NM NM
NM NM
66 11/01
410 10/05 | 21 11/18
-11 11/03
-1 11/03
61 11/01
8 11/22 | - 18
NA
NA
- 5
- 2 | | *15- 14
*15- 31
*15-125
15-262
*15-367 | 394001
394324
393955 | 751234
751315
751100 | THOMPSON, MARION
MOOD, RICHARD J
CHRISTIAN CH
GANT, CARLTON
GANGEMI, VICENT | DEPTFORD TWP
1
1
GANT DOM
1 | 1953
1954
1950
1953 | 102
125
92
142
73 | 83- ₃ 107
³ 285
84- 105
107- ₃ 125
³ 500 | 74 11/07
72 11/15
61 11/07
NM NM
68 11/15 | 75 11/08
70 11/09
59 11/09
27 11/18
66 11/09 | 1
-2
-2
NA
-2 | | *15-542
*15-687
*15-910
*15-953
15-956 | 394638
394155
394718 | 751201
751401
750604 | RON SON MUSHROOM
US EPA
WOLFSON, BENJAMIN
WEHRAN ENG
WEHRAN ENG | 1
KRAMER LF X-6S
WOLFSON DOM 81
DW-2
KINSLEY LNDFL | 1981
1972 | 150
28
84
81
72 | 265 - 295
6 - 24
140 - 160
86 - 100
60 - 65 | NM NM NM NM NM NM NM NM | 73 11/17
21 12/13
58 11/17
56 11/16
51 11/16 | NA
NA
NA
NA | Table 7. Water-level data for wells screened in the Wenonah-Mount Laurel aguifer, 1983 and 1988--Continued | | | | | | | Altitude | | Water le | vel
1988 | Change in | |---|--|----------------------------|--|--|--------------------------------------|---|---|--|---|-----------------------------------| | Well
number | | ongi-
ude | Owner | Local
number | | of land
surface 1 | Screened
interval ²
(ft) | Alti-
tude ¹ Date | | water level
(1983-88) | | *15-1009
15-1011
15-1038
*15-1040
25- 11 | 394023 75°
394350 75° | 1208 | FLAHERTY, JOSEPH
STAUB, JOHN R
GRASSO, JOSEPH S
SPRINGFIELD FARMS
AVON WD | FLAHERTY DOM
STAUB DOMESTIC
GRASSO FOODS
SPRNGFLD FRMS 2
AWD 2 | 1984
1983

2 1988
1925 | 100
140
94
120
22 | 149- 178
265- 275
339
77- 87
419- 501 | NM NM
NM NM
NM NM
NM NM
-165 10/25 | 65 12/14
66 11/18
77 11/09
77 11/15
-180 10/21 | NA
NA
NA
NA
- 15 | | *25- 164
*25- 168
*25- 173
25- 182
*25- 185 | 400957 74°
401244 74° | 1305 i
1135 i
1015 i | HOWELL TWP MUA
HOWELL TWP MUA
NJ CONCRETE COMP
DISEPALO, MARTIN
NAD EARLE | ALDRICH W CO 1
ALDRICH W CO 2
HOWELL TWP 1
1
TRANS DEPOT S7 | 1956
1960
1965
1963
1958 | 125
150
90
125
119 | 349- 370
354- 440
226- 257
229- 236
229- 250 | -39 10/21
-54 10/21
23 10/24
63 10/19
60 10/26 | -56 10/25
-66 10/25
19 10/29
655 01/23
56 10/25 | -17
-12
-4
-8
-4 | | *25- 243
*25- 335
*25- 353
*25- 366
*25- 391 | 401215 741
401542 741
402048 741 | 0409 N
0530 U
0109 N | IENTILE, F J
WARDELL DAIRY
US ARMY
RUMSON C C
SPRING LK HT WD | MARLBORO TWP 4
WARDELL 1
FM 1-NCO OBS
RUMSON C C 1
SPRING LK HGT4 | 1963
1941
1972
1910
1974 | 120
80
140
15
20 | 380
465 - 480
321 - 327
165
485 - 561 | 87 10/19
-128 10/26
12 10/20
-166 10/26 | 86 10/26
-146 10/26
-15 10/31
11 10/20
-218 12/29 | -1
-18
-1
-52 | | *25- 392
*25- 396
*25- 405
25- 409
*25- 412 | 400658 743
401005 743
401000 743 | 3135 i
2913 i
2907 i | | U FREEHOLD TWP4 1 3 1 | 1970
1964
1965
1966 | 480
122
158
140
190 | 92- 102
3124
3125
100- 140 | 83 ⁵ 02/03
85 10/26
128 11/02
132 11/02
145 11/02 | 80 10/28
83 10/27
126 10/28
129 10/28
147 10/28 | -3
-2
-3
-3
2 | | *25- 426
*25- 435
*25- 478
*25- 486
*25- 490 | 400942 741
400642 74
400711 741 | 0756 9
1312 7
0202 9 | THOMPSON HOME
STATE OF NJ
AMERADA HESS
STATE OF NJ ⁴
STATE OF NJ | GERALDINE M H2
ALLAIRE S P 4
2-79
DOE-SEA GRT OBS
ALLAIRE SP 1 | 1973
1979
5 1978 | 120
63
65
10
50 | 3580
385 - 414
377 - 392
604 - 614
3420 | -115 10/28
-93 10/20
-119 10/28
-171 503/20
-88 11/03 | -129 10/24
-104 10/26
-124 10/27
-185 10/28
-96 10/26 | -14
-11
-5
-14
-8 | | 25 - 520
*25 - 521
*25 - 524
25 - 529
*25 - 533 | 401020 74
401125 74
400647 74 | 1937 /
1703 (
1313 (| FRONC, WALTER
AMARESCU, DONALD
CRONIN
GAS LITE REST
MOON MOTEL | HOWELL TWP 4 FREEHOLD TWP FREEHOLD TWP 4 HOWELL TWP 1 | 1980
1979
1979
1962
1966 | 150
150
130
54
120 | 232- 240
222- 228
3 205
375- 385
349- 365 | 88 11/01
NM NM
64 11/01
-114 11/18
-61 11/01 | 85 10/24
99 10/21
61 10/27
-118 ⁶ 1/12
-74 10/24 | -3
NA
-3
-4
-13 | | 25 - 542
*25 - 546
*25 - 637
*25 - 687
25 - 690 | 400713 74
401105 74
401756 74 | 1016 I
1202 I
0258 I | BRISBANE CHILD TC
DUTTON, ANTHONY
USGS
EATONTOWN SR CTZ
HARWOOD COMP | 2
1
HOWLL TWP 3 OBS
EATONTOWN SR H
HARWOOD CO 7 | 1983
1987
1985
1985 | 70
40
112
40
80 | 430 - 450
420 - 445
307 - 317
177 - 187
100 - 110 | -97 10/28
NM NM
NM NM
NM NM | -113 10/26
-143 10/28
-28 10/20
21 10/20
54 10/29 | - 16
NA
NA
NA
NA | | *25- 696
*29- 31
*29- 36
*29- 37
*29- 49 | 400234 740
400410 74
400429 740 | 0814
0917
0652 : | RED BANK BORO
BRICK TWP BD ED
BRICK TWP BD ED
ST DOMINICS CH
BRICK TWP BD ED | RED BK LNDFL M3
EMMA YOUNG 1
HIGH SCHOOL
1
VET MEMORL SCH | 1984
1965
1970
1964
1970 | 30
17
25
20
20 | 13- 33
605- 625
518- 548
576- 591
556- 586 | NM NM
-120 11/18
-136 10/28
-141 10/26
-144 10/28 | 13 10/25
-129 10/27
-151 10/27
-155 10/02
-158 12/02 | NA
- 9
- 15
- 14
- 14 | | *29- 140
29- 227
*29- 234
29- 603
*29- 699 | 400809 74
400239 74 | 1915
2532
0820 | MEADOWBRK VILL | COLL MLLS 3 OBS
HOLMANSVILLE 1
⁴ GA 2
DRUMPT SCHOOL
GETZ SCHOOL | 1964
1966
1974

1973 | ⁴ 135
110
170
20
160 | 257- ₃ 267
358
180- ₃ 200
3580
214- 226 | ⁴ 114 09/29
38 10/24
160 10/31
-119 11/03
124 11/02 | 112 10/27
48 11/19
131 10/25
-113 10/27
121 10/27 | -2
10
-29
6
-3 | | *29- 713
*29- 740
*29- 781
*29- 782
*29- 783 | 400352 74
400622 74
400709 74 | 2145 (
1957
1525 (| JACKSON TWP
OCEAN CO VOC SCH
IVINE, WILLARD
POPOVITCH, DAN
FOUNTAIN HEAD PK | LIBRARY JACKSON 2 JACKSON TWP JACKSON TWP JACKSON TWP | 1978
1976
1977
1978
1979 | 130
105
110
120
⁴ 115 | 318- 324
340- 380
302- 325
375- 381
310- 325 | 83 10/21
41 10/20
NM NM
NM NM
152 11/01 | 82 11/03
39 11/03
40 11/19
-41 11/01
42 11/19 | - 1
- 2
NA
NA
- 10 | | *29- 784
*29- 786
*29- 926
*33- 2
*33- 8 | 400630 74
400610 74
393202 75 | 1730
2728
1630 | EMMUS, ROLAND
JACKSON TWP
JELLYSTONE PARK
CUMBERLAND COUNTY
STRANG, ARNOLD | JACKSON TWP
HULSE RD 1
JELLYSTONE 3
BOSTWICK NO 3
STRANG 1 | 1980
1977
1987
1972
1949 | 90
110
105
85
70 | 341- 347
364- 379
127- 160
462- 472
322- 345 | NM NM
0 10/21
NM NM
22 11/07
NM NM | 2
10/28
-3 11/19
109 10/27
20 11/15
20 11/15 | NA
-3
NA
-2
NA | | *33 - 20
*33 - 22
*33 - 32
*33 - 33 | 393533 75
392740 75
392751 75 | 1018
3201
2441 | HORNER, EPHRAIM
ELMER WC
PUBLIC SERV E-G
L ALLOWAY CR SC
PUBLIC SERV E-G | HORNER OBS
EWC 6
PW 3
LACTES 1
PW 1 | 1929
1963
1970
1964
1968 | ⁴ 77
105
⁴ 12
14
17 | ³ 283
460 - 500
242 - 293
³ 340
248 - 298 | 432 11/07
30 11/07
4-12 11/17
4 12/08
-5 11/17 | 30 11/16
27 11/18
-1 11/21
7 11/22
4 11/21 | -2
-3
11
3
9 | | 33- 35
*33- 50
*33- 56
*33- 192
*33- 241 | 393538 75
393606 75
394051 75 | 2640 :
2524
2148 | PUBLIC SERV E-G
SALEM MEM HOSP
MANNINGTN T E S
KELLY BROTHERS
SALEM CITY WD | PW 2
HOSP 1-1950
MTES 1
2-1954
QUINTON | 1970
1950
1959
1954 | 4 9
20
25
60
10 | 230 - 281
73 - 97
393
45 - 65
3248 | 4-14 11/17
6 11/07
8 11/07
44 11/17
4 11/09 | -3 11/21
4 11/17
6 11/17
43 11/15
6 11/17 | 11
-2
-2
-1
2 | Table 7. Water-level data for wells screened in the Wenonah-Mount Laurel aguifer, 1983 and 1988 -- Continued | Well
number | Locatio
Lati-
tude | on
Longi-
tude | -
Owner | Local
number | | ltitude
of land
surface ¹
(ft) | Screened
interval
(ft) | 2 tu | | 1988
Alti-
tude | | Change in
water level
(1983-88)
(ft) | |---|---|----------------------------|---|--|--------------------------------------|--|---|--------------------|----------------------|--------------------------|--|---| | 33-244
33-245
33-249
*33-252
*33-351 | 393337
393342
393348 | 752719
752718
752755 | SALEM CITY WD
SALEM CITY WD
SALEM CITY WD
USGS
LAZOZ, TED | SWD 4
SCWD 5
SWD 2
SALEM 2 OBS
WOODSTOWN R&D | 1947
1961
1936
1965
1950 | 10
8
5
43
45 | 93- 124
96- 166
110- 156
91- 9
84- 116 | 3 0
) -2
6 0 | | 2
-8
-5
0
30 | 11/17
11/17
11/17
11/22
11/14 | 1
-8
-3
0
NA | | *33-381
*33-384
*33-456
*33-553
*33-664 | ⁴ 393126
393507
393700 | 752521
751045
752538 | MANNINGTN MILLS
WILD OAK CC
ELMER WC
SEABROOK, JOHN M
RED BIRD EGG COMP | MILLS 6
1-IRR-73
EWC 8
SALEM FARMS
GRDN ST EGG 2 | 1977
1973
1982
1984
1975 | 10
20
125
5
65 | 85 - 12!
332
443 - 50
20 - 50
123 - 160 | 3 28
3 NM | 11/08
11/07
NM | | 11/17
601/10
11/18
12/13
11/09 | 1
0
-1
NA
NA | | 33-665
*33-670
*Gd33- 04 | 393355 | 751915 | BADER, LOUIS
LICCIARDELLO, MARK
USGS (DEL) | BADER 30-02302
LICCIARDELLO D
DEAKYNEVILLE 4 | M 1987 | 60
64
18 | 103 - 141
310 - 321
394 - 42 | NM C | | 31
18
2 | 11/09
11/15
11/14 | NA
NA
NA | ¹ Datum is sea level. ² Depth below land surface. ³ Well depth. Revised from Eckel and Walker, 1986. ⁵ Water level measured in 1984. ⁶ Water level measured in 1989. Figure 9A. Water-level hydrographs for observation wells screened in the Wenonah-Mount Laurel aquifer, 1983-89. Figure 9B. Water-level hydrograph for an observation well screened in the Wenonah-Mount Laurel aquifer, 1983-7 Camden, 4; Gloucester, 2; Middlesex, 2; Monmouth, 46; Ocean, 25; and Salem, 1. The water levels in these wells were used to define the potentiometric surface shown on plate 5, though only 75 wells are plotted. Withdrawals from the Englishtown aquifer system were greatest in southeastern Monmouth and northeastern Ocean Counties (table 1; pl. 5). The center of the cone of depression in the Englishtown aquifer system is located near the Atlantic Coast in the Spring Lake Heights area of Monmouth County. Water levels greater than 200 ft below sea level were common in this area (pl. 5). Water levels in the Englishtown aquifer system were lower than those in the upper and middle aquifers of the Potomac-Raritan-Magothy aquifer system, but ground-water withdrawals from the Englishtown aquifer system were smaller (table 1). Low transmissivities of aquifer material in the Englishtown aquifer system account for the low water levels (Nichols, 1977b, p. 59). The highest water levels, as much as 122 ft above sea level, were measured in northwestern Ocean and Monmouth Counties near the outcrop area. Many of the potentiometric-surface contours in central and eastern Ocean County are approximations because water-level data for the region are sparse (pl. 5). The Englishtown aquifer system consists of the upper and lower sand facies of the Englishtown Formation (Nichols, 1977a, p.20). The potentiometric surface shown on plate 5 represents the upper sand facies where it is separated from the lower sand facies by a confining unit; water levels in the lower sand facies, although shown on plate 5, were not used in contouring the potentiometric surface. Water levels measured in two public supply wells, 29-438 and 29-449, in the Lakewood area are a composite of the water levels in the upper and lower sands. The water level in observation well 29-441 located nearby, but screened only in the lower sand, was 21 ft higher than the water level in well 29-438 and 49 ft higher than that in well 29-449. In east-central Ocean County, the upper sand facies is thin and is not used for water supply. In wells 29-433, 29-452, 29-454, and 29-534, all screened in the lower sand, static heads were 86 to 184 ft below sea level. # Water-Level Fluctuations Water-level changes for 70 wells were calculated for the 5-year period. Water levels rose in 20 wells, declined in 42 wells, and were unchanged in 8 wells. Some of the water-level changes listed in table 8 may be misleading for the following reasons. (1) The transmissivity of the Englishtown aquifer system is low, and water levels may still have been recovering at time of measurement. Average time for water-level recovery in the Englishtown aquifer system is 3 to 5 hours, whereas average recovery time in the Potomac-Raritan-Magothy aquifer system is 1 hour. (2) Accurate water-level measurements are progressively more difficult to obtain with increasing depth to water; airline measurements are the least accurate. Water levels declined in southwestern Monmouth County. Heads declined as much as 26 ft in the Spring Lake Heights area (well 25-388) and 34 ft in the Belmar area (well 25-23). As a result of the decrease in ground-water withdrawals from the Englishtown aquifer system in the Lakewood area, water levels rose 5 to 42 ft. Similar increases occurred in Point Pleasant Township. Water levels in wells near Lavallette and Brielle rose 11 to 24 ft (pl. 5; table 8). Water levels in USGS observation wells in Camden, eastern Monmouth, and southeastern Ocean Counties, distant from pumping centers, were unchanged or rose over the 5-year period. Hydrographs for five wells screened in the Englishtown aquifer system are shown in figures 10 and 11; well locations are shown on plate 5. Observation well 25-429 (fig. 10) is located in southern Monmouth County. Long-term water levels show a slight downward trend; however, water levels in this well can vary seasonally as much as 20 ft because of nearby groundwater withdrawals. Observation well 5-259 (fig. 11) is located in northern Burlington County, distant from any major pumping centers; however, water levels declined as much as 25 ft during summer in 1985, 1986, and 1987 when a nearby well was used for irrigation. The long-term trends indicate that these ground-water withdrawals have little effect on the regional water level. Observation well 29-138 is located in northwestern Ocean County about 12 mi west of Lakewood. The hydrograph for this well shows that water levels declined about 4 ft over the 5-year period. Observation well 29-534 in northern Ocean County is screened in the lower sand facies of the aquifer. Long-term water levels were unchanged over the 5-year period, whereas seasonal variations typically were less than 2 ft. Water levels in observation well 29-503 in Ocean County south of Point Pleasant varied as much as 16 ft as a result of nearby ground-water withdrawals. Long-term water levels remained unchanged. ### Potomac-Raritan-Magothy Aquifer System The Potomac Group and Raritan and Magothy Formations form the Potomac-Raritan-Magothy aquifer system which, depending on location, has been divided into two or three aquifers (Zapecza, 1989, p. 8-10). In the northern part of the New Jersey Coastal Plain, the upper and middle aquifers are laterally continuous with the Old Bridge aquifer (primarily the Old Bridge Sand Member of the Magothy Formation) and the Farrington aquifer (primarily the Farrington Sand Member of the Raritan Formation), respectively. Withdrawals from the upper aquifer were greatest in the northwestern parts of Burlington, Camden, and Gloucester Counties and in Middlesex and Monmouth Counties (table 1; pl. 6). Withdrawals from the middle aquifer were greatest in the area from northwestern Burlington County to northwestern Gloucester County (table 1; pl. 7). The lower aquifer, which is present in the western parts of Burlington, Camden, Gloucester, and Salem Counties, is recognizable in the subsurface for about 8 to 12 mi downdip from the northwestern extent of the undifferentiated outcrop area of the Potomac Group and Raritan Formation (Zapecza, 1989, p. 8-10). Withdrawals from the lower aquifer were greatest in the northwestern parts of Gloucester, Camden, and Burlington
Counties (table 1; pl. 8). Between Salem County and northern Burlington County, the middle aquifer is present in the subsurface within a 10- to 12-mi-wide band that parallels the outcrop area. Southeast of this band, the lower and middle aquifers have not been differentiated (Zapecza, 1989, pls. 3-7). In this report, all wells screened in the undifferentiated part of the Potomac-Raritan-Magothy aquifer system have been assigned to the middle aquifer in all tables, figures, and plates. Table 8. Water-level data for wells screened in the Englishtown aquifer system, 1983 and 1988 [AMER, American; AUCT, Auctioneers; BDC, Bridge Development Corporation; BD, Board of Education; HS, High School; COMP, Company; CRNR, Corner; CORP, Corporation; CO, County; CC, Country Club; DEV, Development; DR, Drive; EL, Elementary; EPA, Environmental Protection Agency; ft, feet; GC, Golf Course; HT, Heights; HOSP, Hospital; INC, Incorporated; IND, Industrial; I, Institution; LF, Landfill; mo, month; MUA, Municipal Utility Authority; NJ, New Jersey; OLYMPIA & YORK, Olympia and York Bridge Development; PK, Park; PT, Point; SCH, School; SNR CTZ, Senior Citizens; ST, State; TELE, Telephone; TWP or T, Township; USGS, U.S. Geological Survey; WC, Water Company; WD, Water Department; --, missing data; NM, not measured; NA, not applicable; wells marked with an asterisk are shown on plate 5] | Well
number | Locati
Lati-
tude | on
Longi
tude | | | | | Screened
interval ²
(ft) | 198
Alti-
tude | | 198
Alti-
tude | 1 Date | Change in
water level
(1983-88)
(ft) | |---|--|----------------------------|--|--|--|---------------------------------|--|--|---|-------------------------------------|---|---| | *5-195
*5-197
*5-259
*5-296
*5-375 | 395653
395524
395521 | 744921
745025
745344 | THOMAS, ALFRED
JONES, LESTER
USGS
RUDDEROW, J E
BURLINGTON CO I | THOMAS D-1
LUMBERTON TWP ³
MEDFORD 2 OBS
SPRING VALLEY2
BUR CO INST 3 | 1954
1953
1963

1956 | 60
41
73
60
70 | 70 - 74
148 - 159
253 - 263
4135
343 - 378 | 23
25
20
NM
29 | 10/31
11/04
09/30
NM
11/02 | 22
19
24
57
25 | 10/25
10/25
11/07
12/19
11/03 | - 1
- 6
4
NA
- 4 | | 5-378
*5-387
*5-437
*5-754
*7-166 | 395943
400210
395941 | 744120
744138
743250 | BURLINGTON CO I
PEMBERTON TWP SCH
KAUFFMAN, MINTER
US ARMY
CLEMENTON WD | BUR CO INST 5
HIGH SCH 2 (3)
SPRINGFLD TWP 3
RANGE HQ 7
CWD 9 | 1972
1973
1960
1975
1954 | 65
50
74
100
150 | 328 - 368
208 - 228
94 - 105
419 - 447
367 - 457 | 31
54
61
46
46 | 11/02
11/03
11/01
11/01
10/31 | 29
49
61
43
11 | 11/04
11/01
11/03
11/07
11/10 | -2
-5
0
-3
-35 | | *7-529
*7-672
7-673
*15-188
*15-676 | 394929
394929
394605 | 750023
750023
751057 | CLEMENTON WD
NJ AMER WC
NJ AMER WC
YAHRLING, F
US EPA | CWD11
OBS WELL 1 EF2
TW-1 EF
YAHRLING 1
KRAMER LF X-6D | 1978
1986
1986
1955
1984 | 60
76
76
80
28 | 250 - 283
195 - 215
195 - 215
134 - 160
68 - 78 | 55
NM
NM
NM | 10/31
NM
NM
NM
NM | 31
50
50
31
30 | 11/10
11/14
11/14
11/10
11/15 | -24
NA
NA
NA | | *23-211
*23-605
*25- 01
*25- 09
*25- 16 | 402159
401401
402441 | 741908
740025
740234 | VLCEJ, STEPHEN
OLD BRIDGE DEV CORP
ALLENHURST WD
ATL HIGHLANDS WD
BELMAR BORO WD | 1972
O&Y CC2
AWD 4
AHWD 2
BWD 3 ELEC(12) | 1972
1981
1950
1923
1949 | 105
120
17
15
20 | 43- 49
37- 47
525- 565
4200
563- 594 | 93
NM
-82
11
-196 | 10/19
NM
11/01
10/21
10/28 | 91
86
-89
5
-202 | 10/19
10/21
10/26
10/24
10/24 | -2
NA
-7
-6
-6 | | 25 - 23
*25 - 26
*25 - 28
*25 - 30
*25 - 38 | 401102
400623
400645 | 740045
740429
740345 | BELMAR BORO WD
BELMAR BORO WD
BRIELLE WD
BRIELLE WD
HOMINY HILLS GC | BWD 13
BWD 4 ELEC(11)
BWD 3
BWD 2
GLF CLB 1-1941 | 1973
1941
1967
1950
1941 | 20
15
90
33
126 | 555- 605
601- 671
770- 820
690- 750
328- 338 | - 192
- 174
- 220
- 249
57 | 10/28
10/28
10/26
10/25
10/19 | -226
-173
-207
-225
50 | 10/24
10/24
11/23
11/23
10/24 | -34
1
13
24
-7 | | *25- 46
*25- 47
*25- 64
*25- 79
*25- 80 | 401803
401155
401331 | 740814
741011
741944 | CEDAR DR EL SCH
DORBROOK PARK
FARMINGDALE WD
CLAYTON, WM D
WORTHINGTON BIO | COLTS NECK TWP
ROSENBERG 1
FARMINGDALE 4
CLAYTON 2
1-1967 | 3 1963
1957
1970
1955
1967 | 122
80
85
170
120 | 212- 232
322- 342
410- 470
303- 333
294- 334 | 68
33
-72
119
78 | 10/17
10/20
10/24
11/01
10/27 | 61
27
-73
107
73 | 10/26
10/27
10/26
12/14
10/28 | -7
-6
-1
-12
-5 | | *25- 90
*25- 96
*25-105
*25-107
*25-132 | ⁴⁰¹⁶²⁴
⁴⁰¹⁶⁵⁴
401701 | 741502
741736
741417 | BROCKWAY GLASS
FREEHOLD TWP WD
FREEHOLD TWP WD
MUELLER, R W DR
BELL TELE COMP | BROCKWAY 1
5-OLD SO.GULF1
FREEHOLD TWP 3
DURAND,E. 1960
BELL LAB 2 | 1955
1964
1967
1960
1960 | 140
200
112
163
120 | 240 - 260
327 - 356
150 - 212
249 - 257
191 - 221 | 83
88
100
81
64 | 10/24
10/25
10/25
10/28
10/17 | 83
81
69
73
63 | 10/25
10/24
10/24
10/21
10/26 | 0
-7
-31
-8
-1 | | *25-144
*25-150
25-151
*25-161
*25-162 | 402432
402439
400743 | 740848
740849
741337 | BELL TELE COMP
LILY TULIP CUP
LILY TULIP CUP
HOWELL TWP BD ED
NJ NATURAL GAS | BELL LAB 3
LILY TULIP 2
LILY TULIP 1
SOUTHARD SCH
1-1973 | 1965
1962
1962
1955
1973 | 120
65
60
110
69 | ⁴ 154
97- 122
101- 126
558- 582
500- 560 | NM
36
33
-107
-120 | NM
10/20
10/20
10/27
10/20 | 75
38
33
-97
-125 | 10/26
10/18
10/18
10/26
10/25 | NA
2
0
10
-5 | | *25-165
*25-184
*25-213
*25-239
*25-250 | 401429
401253
401838 | 741254
742122
741324 | HOWELL TWP MUA
DIXON FARMS
BLUE STAR STABLES
AIR CRYO INC
GORDONS CORNER WC | ALDRICH W CO 4
HOWELL TWP 3
1969
1
VILLAGE 215 OB: | 1967
1963
1969
1963
s 1964 | 135
140
165
128
139 | 363- 550
360- 380
275- 285
201- 231
185- 215 | NM
69
116
107
99 | NM
11/01
11/01
10/25
09/30 | -94
65
114
100
95 | 10/25
10/24
10/25
10/28
10/20 | NA
-4
-2
-7
-4 | | *25-256
*25-263
*25-374
25-384
*25-385 | 402103
400804
400845 | 741351
740227
740210 | MARLBORO ST HOSP
MARLBORO ST HOSP
SEA GIRT WD
SPRING LAKE WD
SPRING LAKE WD | STATE HOSP 4
STATE HOSP 13
SGWD 5
SLWD 2
SLWD 3 | 1953
1963
1941
1941 | 125
140
20
15
20 | ⁴ 124
142 - 168
660 - 710
640 - 700
640 - 705 | 87
85
-218
-214
-208 | 10/18
10/18
10/26
10/25
10/25 | 83
84
-216
-225
-210 | 10/25
10/25
10/26
10/25
10/25 | -4
-1
2
-11
-2 | | 25-386
25-388
*25-389
*25-408
*25-429 | 400845
400859
401007 | 740312
740308 | SPRING LAKE WD
SPRING LAKE HT WD
SPRING LAKE HT WD
R CLAYTON CONCRETE
USGS | SLWD 4
SPRING LK HGT3
SPRING LK HGT2
D T ASSOC 1
ALLAIRE SPC OB | 1969 | 15
25
60
105
98 | 600- 670
630- 680
660- 711
96- 119
623- 633 | -199
-230
-232
100
-149 | 10/25
10/26
10/26
11/02
09/29 | -209
-256
-230
100
-149 | 10/25
10/25
10/25
11/04
10/31 | -10
-26
2
0 | | *25-441
25-461
*25-638
*25-692
*25-697 | 402432
401105
401813 | 740848
741202
741818 | WALL TWP WD
COMDATA
USGS
WEINGARTEN-SIEGEL
BOWERS, P J & COMP | RT 34 WELL
TEST FOR 2
HOWELL TWP4 OB:
JUSTIN CORP CTI
PJ BOWERS & CO | R 1985 | 120
65
112
110
50 | 549- 649
4130
483- 493
120- 150
247- 277 | -163
37
NM
NM
NM | 10/27
10/20
NM
NM
NM | -170
36
-53
90
-2 | 10/27
10/18
10/20
10/26
12/20 | - 7
- 1
NA
NA
NA | Table 8. Water-level data for wells screened in the Englishtown aquifer system, 1983 and 1988--Continued | Well L | Locatio
ati-
ude | on
Longi-
tude | -
Owner | | ear
rilled | Altitude
of land
surface ¹
d (ft) | Screened
interval ²
(ft) | 198.
Alti-
tude | ater le
3
1 Date
mo/day) | 1988
Alti-
tude | | Change in
water level
(1983-88)
(ft) | |--------------------------------------|-------------------------------|----------------------------|--|--|--------------------------------------|---|---|---
---|---|---|---| | *25-710 4
*25-713 4
*29- 05 4 | 00555 7
01656 7
00405 7 | 740850
740803
740242 | BATTLEGROUND CC
PARKWAY WC
BAILEY, R E
NJ AMER WC
NJ AMER WC | BATTLEGRD 1-J63
PARKWAY 1 A
NEW 2 DOM
BAY HEAD 5
BAY HEAD 6 | 1963
1986
1988
1947
1950 | 140
45
80
10
10 | 170- 176
594- 644
300 320
750- 834
778- 818 | NM
NM
NM
-219
-206 | NM
NM
NM
10/24
10/24 | 82
-164
19
-202
-207 | 10/27
10/25
01/04
10/08
12/08 | NA
NA
NA
17
-1 | | *29-229 4
*29-233 4
*29-236 32 | 00742 7
400823 | 741512
741639
741533 | USGS JACKSON TWP MUA JACKSON TWP MUA JACKSON TWP MUA GREAT ADVENTURE | COLL MLLS 1 OBS
JACKSON 1
JACKSON 4
JACKSON 2
GA 1 | 1964
1961
1965
1962
1974 | 137
110
100
170
140 | 417- 427
511- 557
448- 500
541- 577
358- 388 | 64
NM
-36
-43
NM | 09/29
NM
10/27
10/27
NM | 60
-92
-36
-53
122 | 10/27
10/24
10/24
10/24
10/25 | -4
NA
0
-10
NA | | 29-431 4
*29-433 4
*29-438 4 | 00253
00309
00443 | 741043
741120
741352 | LAKEWOOD TWP MUA
LAKEWOOD TWP MUA
LAKEWOOD TWP MUA
NJ AMER WC
NJ AMER WC | S LAKEWOOD 1
S LAKEWOOD 2
S LAKEWOOD 3
LAKEWOOD 8
LAKEWOOD OBS | 1969
1963
1966
1965
1966 | 90
40
45
78
30 | 752- 817
680- 762
673- 741
600- 758
726- 736 | - 196
- 222
- 202
- 170
- 141 | 10/25
10/25
10/25
10/27
10/27 | - 190
- 180
- 184
- 161
- 140 | 10/25
10/25
10/25
10/24
10/26 | 6
42
18
9
1 | | *29-449 4
*29-450 4
*29-451 4 | 00614
00622
00636 | 741157
741349
741515 | NJ AMER WC
NJ AMER WC
NJ AMER WC
LAKEWOOD T PINE PK
LAVALLETTE WD | LAKEWOOD 5
LAKEWOOD 9
LAKEWOOD 6
ST GABRIELS 1
LWD 3 | 1957
1968
1960
1957
1948 | ³ 36
55
70
60
7 | 547- 604
569- 698
520- 582
510- 530
1,120-1,180 | -178
-153
-108 | ⁶ 03/07
⁶ 03/07
10/27
10/31
10/20 | - 154
- 189
- 133
- 103
- 108 | 10/24
10/24
10/24
11/01
11/22 | -3
-11
20
5
11 | | *29-503 4
*29-518 4
29-519 4 | 00210
00401
00401 | 740310
743200
743200 | LAVALLETTE WD
NJ WC
NEW EGYPT WC
NEW EGYPT WC
PT PLEASANT WD | LWD 2
MANTOLKNG 6 OBS
2-1903
1
PPWD 6 OBS | 1931
1955
1903
1907
1965 | 5
75
65
20 | 1,009-1,136
845- 906
218- 238
214- 239
730- 790 | -118
-194
NM
59
-211 | 10/20
10/28
NM
10/26
10/25 | -107
-194
61
57
-202 | 11/22
10/28
11/01
11/01
11/29 | 11
0
NA
-2
9 | | *29-534 3
*29-938 4 | 95609
100404 | 741240
742137 | PT PLEASANT WD
USGS
JACKSON ESTATES
COWTOWN AUCT INC | PPWD 3
TOMS RIV 2 OBS
1988 WELL
COWTOWN AUCT 2 | 1946
1965
1988
1975 | 10
18
130
35 | 748- 798
1,080-1,146
487- 527
95- 115 | -259
-86
NM
NM | 10/25
10/02
NM
NM | -216
-86
-8
29 | 11/29
10/21
11/02
11/21 | 43
0
NA
NA | ¹ Datum is sea level. $^{^{2}}$ Depth below land surface. Revised from Eckel and Walker, 1986. ⁴ Well depth. ⁵ Water level measured in 1989. ⁶ Water level measured in 1984. Figure 10. Water-level hydrographs for observation wells screened in the Englishtown aquifer system near centers of large ground-water withdrawals, 1983-89. Figure 11. Water-level hydrographs for observation wells screened in the Englishtown aquifer system distant from centers of large ground-water withdrawals, 1983-89. # Water Levels Water-level measurements for 340 wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system are listed in table 9. The number of wells in New Jersey in which water levels were measured, by county, is as follows: Burlington, 42; Camden, 46; Gloucester, 60; Mercer, 8; Middlesex, 71; Monmouth, 78; Ocean, 9; and Salem, 21. In Philadelphia County, Pennsylvania, water levels were measured in two wells, and in New Castle County, Delaware, water levels were measured in three wells. The water levels in these wells were used to define the potentiometric surface shown on plate 6, though only 176 wells are plotted. Water levels define a large, areally extensive cone of depression in the upper aquifer of the Potomac-Raritan-Magothy aquifer system (pl. 6). The cone is centered in Camden and western Burlington Counties and extends throughout most of Gloucester County. Within the cone, water levels were as low as 107 ft below sea level. The highest water levels in the upper aquifer were 69 ft above sea level in well 21-19 and 87 ft above sea level in well 23-400; these wells are located in the outcrop areas of Mercer and Middlesex Counties, respectively. Ground-water withdrawals that cause smaller cones of depression in the middle aquifer of the Potomac-Raritan-Magothy aquifer system in Burlington, Gloucester, and Salem Counties do not appear to affect water levels in the upper aquifer, indicating a lack of hydraulic connection between the upper and middle aquifers in these areas (Walker, 1983 p. 24). The two cones of depression in Monmouth County that were mapped in 1983 (Eckel and Walker, 1986, pl. 7) have been replaced by a regional cone that encompasses two local cones representing local centers of pumping. These local centers of pumping are in the Freehold-Marlboro Quadrangle and the greater Asbury Park Quadrangle. Water levels near the centers of these cones ranged from 40 to 45 ft below sea level. ### Water-Level Fluctuations Water-level changes in 253 wells were calculated for the 5-year period. Water levels rose in 64 wells, declined in 158 wells, and were unchanged in 31 wells. Regionally, the largest water level decline is as much as 18 ft. In Camden County, water levels declined 17 ft near the center of the cone of depression. In Burlington County, water levels declined as much as 18 ft. Water levels in Gloucester County declined about 5 to 7 ft in areas not subject to large ground-water withdrawals, and declines of 12 ft were recorded in and adjacent to local pumping centers. Water levels in wells in Mercer and Middlesex Counties that are located in and adjacent to the outcrop area declined 1 to 3 ft; however, in a few isolated wells in Middlesex County static heads rose 10 ft. In Ocean County, water levels in wells along the Atlantic Coast rose 2 to 4 ft. Wells located inland that are affected by the major withdrawal centers showed a slight decline in water levels. Static heads in the western part of Salem County declined 4 to 5 ft over the 5-year period, and heads in the northern areas of Salem County near the Gloucester County border declined only a few feet. Hydrographs for six wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system are shown in figures 12, 13, and 14; the locations of the wells are shown on plate 6. The hydrographs for the 6 wells show a 5-ft decline in water levels over the 5-year period. Observation wells 5-258, 7-117, and 7-477 (fig. 12) are located near the major cone of depression in central Camden County and western Burlington County. Variations in pumping schedules at nearby public supply wells produce similar seasonal trends in water levels at the three sites. Water levels declined as much as 27 ft in observation well 7-117. Observation wells 23-228 and 25-206 (fig. 13), in Middlesex and Monmouth Counties, respectively, are located near an area of large ground-water withdrawals. Seasonal pumping cycles caused water levels to fluctuate 6 to 7 ft. As a general trend, 2- to 3-ft declines occurred over the 5-year period. Long-term water-level trends in observation well 23-228 could be caused by natural recharge conditions and the location of the well adjacent to the outcrop area. Similar hydrograph patterns for well 23-228, screened in the upper aquifer, and well 23-229, screened in the middle aquifer at the same location (fig. 15B), together with a head that is 6 ft lower in the middle aquifer than in the upper aquifer, indicate the presence of a downward vertical gradient from the upper to the middle aquifer at this site. Observation well 7-477 (fig. 12), screened in the upper aquifer, and well 7-476 (fig. 15B), screened in the middle aquifer, also show similar hydrograph patterns. Although no ground water was withdrawn nearby, static heads were 20 ft lower in the upper aquifer than in the middle aquifer, indicating an upward vertical gradient from the middle aquifer to the upper aquifer. The hydrograph for observation well 33-253 (fig. 14), located far from areas of ground-water withdrawal, shows a 3-ft decline in water levels over the 5-year period with little or no seasonal variation. Middle Aquifer and Undifferentiated Part of the Potomac-Raritan-Magothy Aquifer System # Water Levels Water-level measurements for 378 wells screened in the middle aquifer and undifferentiated part of the Potomac-Raritan-Magothy aquifer system are listed in table 10. The number of wells in New Jersey in which water levels were measured, by county, is as follows: Burlington, 83; Camden, 21; Cumberland, 1; Gloucester, 64; Mercer, 18; Middlesex, 95; Monmouth, 20; Ocean, 16; Salem, 50. In Philadelphia County, Pennsylvania, water levels were measured in one well. In New Castle County, Delaware, water levels were measured in nine wells. The water levels in these wells were used to define the potentiometric surface shown on plate 7, though only 139 wells are plotted. Table 9. Water-level data for wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988 [AMER, America; AUTH, Authority; BD
ED, Board of Education; CL, Club; CONST, Construction; CO, Company; CORP, Corporation; CC, Country Club; DEPT, Department; DEV, Development; ft, feet; DEL, Delaware; HGTS, Heights; INT, International; MCHVIL PNSK WCM, Merchantville-Pennsauken Water Commission; MON BCH CLD STR, Monmouth Beach Cold Storage; mo, month; MUA, Municipal Utility Authority; NJ, New Jersey; PK, Park; POLYP, Polypropylene; PUB, Publishing; NAT, Natural; RCN, Recontouring; REFRIG, Refrigerator; SEW, Sewage; ST, State; TWP, Township; US EPA, U.S. Environmental Protection Agency; USGS, U.S. Geological Survey; WC, Water Company; HS, High School; WA, Waste Management; WD, Water Department; WSC, Water Supply Company; --, missing data, NM, not measured; NA, not applicable; wells marked with an asterisk are shown on plate 61 | | | | | A.I | ltitude | | Water le | vel Ch | nange in
Water | |---|---|--|--|--------------------------------------|--|--|--|--|--------------------------------| | Well
number | Location
Lati- Long
tude tude | i-
Owner | | | | Screened
interval ²
(ft) | Alti-
tude ¹ Date
(ft)(mo/day) | Alti-
tude ¹ Date | level
(1983-88)
(ft) | | 5- 45
5- 60
*5- 76
*5- 77
*5- 116 | 400538 745053
400324 745152
400326 744942 | SANDMAN MOTEL
BURLINGTON CWD
HEAL, CHARLES JR
BURLINGTON TWP WD
CHESTERFIELD SCH | SANDMAN 1
BCWD 2
HEAL
1-1973 | 1952
1955
1973
1957 | 85
21
50
60
102 | 33- 49
59- 80
123- 165
247- 253 | NM NM
NM NM
-4 10/31
NM NM
6 10/27 | 8 10/31
4 11/02
-6 11/03
-13 10/31
3 11/04 | NA
NA
-2
NA
-3 | | *5- 165
*5- 167
*5- 169
*5- 207
*5- 209 | 395233 745418
395247 745157
395322 745300
400356 744039
400412 744323 | EVESHAM MUA
EVESHAM MUA
VAN MATER, CH | EMUA 4
EMUA 5
TEST 12 -1972
CRESANT FARMS
CWC 2(OLD 3) | 1970
1973
1972

1969 | 110
50
50
95
73 | 464 - 500
478 - 548
455 - 475
3325
259 - 274 | -81 11/07
-79 11/07
-83 11/07
-16 10/28
-18 10/28 | -89 11/28
-84 11/02
-87 11/02
-20 11/03
-22 11/01 | -8
-5
-4
-4
-4 | | 5- 211
*5- 212
*5- 218
*5- 229
*5- 249 | 400515 744109
400718 744453
395630 745855 | LISEHORA, MARY N BURL COUNTY HIGH RIVER FRONT MOTEL MAPLE SHADE WD MEDFORD TWP WD | S J GROVE 1
1
MOTEL
MSWD 9
MTWD 3 | 1970
1959

1975
1968 | 80
83
60
40
55 | ³ 220
290- ³ 100
160- 200
523- 541 | -5 10/27
-15 11/10
-4 10/26
-57 11/03
-75 11/03 | -9 11/04
-18 11/10
-4 11/02
-56 11/04
-84 11/07 | -4
-3
0
1
-9 | | *5- 251
5- 252
*5- 253
*5- 258
*5- 285 | 395524 745025 | MEDFORD WC
MEDFORD LEASE CO | MWC 4(1968)
MWC 1(3)
1-1972
MEDFORD 1 OBS
MHWC 4 | 1968
1957
1972
1963
1964 | 49
48
432
471
16 | 506- 536
506- 536
447- 471
400- 410
307- 342 | -71 11/02
-73 11/02
-72 11/02
-65 ⁴ 01/09
-37 11/01 | -77 12/12
-69 10/26
-68 10/26
-66 11/07
-42 12/05 | -6
4
-1
-5 | | 5- 289
*5- 310
*5- 315
5- 317
5- 318 | 395728 745504
395845 745240
395850 745318 | MOUNT HOLLY WC
NJ TURNPIKE AUTH
LARCHLMONT FARMS
NJ TURNPIKE AUTH
NJ TURNPIKE AUTH | MHWC 3
MAINT 2
FARM WELL 1
4N-1
4N-2 | 1953
1952
1958
1951
1954 | 19
40
55
45
45 | 316- 346
120- 160
200- 238
192- 222 | -34 11/01
-48 10/26
-45 11/04
NM NM
NM NM | -41 12/05
-50 12/19
-49 11/04
-45 12/01
-43 12/01 | -7
-2
-4
NA
NA | | *5- 383
*5- 446
5- 707
*5- 728
*5- 729 | 400328 744636
395315 745503
395819 744341 | SYBRON CHEMICAL
INTERSTATE S-P
EVESHAM MUA
MOBILE ESTATES
MAPLE SHADE WD | IONAC CHEM 2
INTERSTATE 1
EMUA 7
FIELD PUMP
MSWD 2 | 1960
1960
1979
1972 | 30
75
100
55
30 | 490- 521
220- 245
405- 441
485- 500
91- 121 | -20 11/03
-15 10/27
-86 11/07
-31 10/31
NM NM | -38 11/08
-18 11/02
-94 11/03
-37 10/31
-26 12/12 | -18
-3
-8
-6
NA | | 5- 730
*5- 731
*5- 745
5- 747
*5- 748 | 400739 744228
400157 744819
395921 745243 | INTERSTATE WASTE
INTERSTATE WASTE
BURLINGTON COUNTY CC
DITTMAR
RADIO CORP OF AMER | MONITOR 9
MONITOR 8
CLUB 1R
1949
RANCOCAS 1 | 1978
1978
1974
1949 | 75
⁴ 93
102
80
80 | ³ 135
118- 128
260- 290
³ 257
³ 170 | 4 10/25
44 10/25
-17 10/31
-46 10/31
-39 11/08 | 3 10/24
2 10/24
-21 11/07
-53 11/01
-45 11/09 | -1
-2
-4
-7
-6 | | *5- 755
5- 757
5- 795
5- 820
*5- 821 | 395326 745223
395239 745308
395049 745334 | KING'S GRANT WC
EVESHAM MUA
MT LAUREL MUA
KING'S GRANT WC
FEDERAL LAND BANK | KGWC 1
EMUA 6
MLWC 5
KGWC 2
1 | 1973
1976
1973
1983 | 90
50
60
90
65 | 547- 593
458- 550
416- 463
545- 591
214- 218 | -79 11/04
NM NM
-96 11/07
-78 11/04
-21 11/02 | -91 10/31
-87 11/02
-97 11/02
-80 11/14
-25 11/02 | -12
NA
-1
-2
-4 | | *5-1077
5-1078
7- 03
*7- 13
*7- 15 | 400402 744612
395146 750254 | BURL COUNTY-OFS OF WA
BURL COUNTY-OFS OF WA
OWENS CORNING
BELLMAWR BORO WD
BERLIN WD | | 1981
1981
1956
1942
1972 | 30
20
60
31
150 | 78- 98
75- 115
285- 315
111- 160
675- 745 | NM NM
NM NM
-102 11/09
-46 11/09
-89 11/07 | -11 11/02
-17 11/02
-96 11/17
-44 11/09
-97 11/17 | NA
NA
6
2
-8 | | *7- 18
7- 19
*7- 115
*7- 117
7- 120 | 394738 745614
394738 745614
395149 745909
395229 745712
395237 750031 | BERLIN WD
WOODCREST CC | BWD 9
BWD 10
CLUB 1
HUTTON HL 1 OBS
HUSSMAN | 1955
1967
1949
1965
1957 | 145
145
70
4 158
67 | 650- 713
645- 713
400- 420
552- 562
276- 306 | NM NM
5-83 02/14
-84 11/09
4-79 12/09
-90 11/10 | -95 11/15
-97 11/15
-101 10/31
-84 11/19
-84 11/09 | NA
- 14
- 17
- 5
6 | | *7- 131
7- 133
*7- 143
*7- 148
*7- 149 | 395353 745708
395353 745708
395441 750104
395455 745929
395503 750221 | NJ AMER WC
NJ AMER WC | OLD ORCHARD B
OLD ORCHARD 36
ELLISBURG 16
KINGSTON 28 | 1967
1968
1957
1964
1956 | 71
80
40
44
15 | ³ 342
299- 349
187- 220
175- 207
96- 111 | -79 11/16
NM NM
-65 11/16
-66 11/10
-54 11/16 | -83 11/03
-75 11/08
-67 11/09
-66 11/08
-59 11/08 | -4
NA
-2
0
-5 | | 7- 151
*7- 162
*7- 193
*7- 242 | 395608 750025
395256 750633 | GARDEN ST RACE TRACK
NJ AMER WC
CRESCENT TRAILOR PK
SOCIETY DIVINE | RACE TRACK
COLUMBIA 24
TRAILER PK 1
SAVIOR | 1944
1961
1952
1951 | 30
34
20
107 | ³ 158
112- 167
59- 71
492- 512 | -54 11/09
-50 11/10
-40 11/14
-76 12/20 | -54 11/18
-52 11/03
-37 11/08
-82 11/16 | 0
-2
3
-6 | Table 9. Water-level data for wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988--Continued | Well
number | Locat
Lati-
tude | ion
Long
tude | i.
Owner | | | Altitude
of land
surface ¹
(ft) | Screened
interval ²
(ft) | Alti
tud | e ^l Date | vel
1988
Alti-
tude ¹ Date
(ft)(mo/day) | Change in
water
level
(1983-88)
(ft) | |--|----------------------------|----------------------------|--|---|--|---|--|--------------------------------------|---|--|--| | 7-244
*7-249
*7-250
*7-252
7-272 | 394754
394718
394759 | 750343
750336
750158 | CAMDEN COUNTY
GARDEN ST WC
GARDEN ST WC
GARDEN ST WC
NJ AMER WC | LAKELAND 3
BLACKWOD DIV 3
BLACKWOD DIV 6
OTTERBROOK 34 | 7 1974 | 50
65
60
75
60 | ³ 490
426- 447
437- 479
407- 477
³ 377 | - 74
NM
NM
- 84 | 11/02
NM
NM
11/15
NM | -79 11/10
-86 11/09
-89 11/09
-81 11/09
-80 11/07 | -5
NA
NA
3
NA | | *7-274
*7-275
7-279
7-282
*7-285 | 395231
395238
395243 | 750312
750317
750320 | NJ AMER WC
NJ AMER WC
NJ AMER WC
NJ AMER WC
NJ AMER WC | OTTERBROOK 39
HADDON 20
HADDON 30
HADDON 11
EGGBERT 18 | 1968
1958
1965
1945
1958 | 60
65
84
24 | 269- 349
236- 267
224- 275
212- 272
144- 191 | -87
-78
-72
-75
-64 | 11/07
11/07
11/07
11/07
11/07 | -81 11/07
-79 11/14
-77 11/14
-77 11/10
-64 11/08 | 6
-1
-5
-2
0 | | *7-293
*7-297
*7-299
7-310
*7-311 | 395317
395322
394928 | 750141
750158
750024 | HADDON TWP BD ED
HADDONFIELD WD
HADDONFIELD WD
NJ AMER WC
NJ AMER WC | HADDON TWP HS'
HWD
4
LAYNE 2
LAUREL 13
LAUREL 15 | 1 1966
1943
1956
1954
1964 | 15
18
65
77
75 | 142- 162
186- 240
206- 246
394- 456
395- 473 | -57
NM
-85
-83
-86 | 11/10
NM
11/04
11/16
11/16 | -57 11/10
-79 12/12
-85 11/10
-85 11/14
-91 11/10 | 0
NA
0
-2
-5 | | 7-316
*7-318
*7-322
*7-392
7-398 | 395135
395359
394641 | 750246
750445
745909 | NJ AMER WC
OWENS CORNING
NJ AMER WC
PINE HILL MUA
PINE HILL MUA | MAGNOLIA 33
CORNING 2
OAKLYN TEST
PHMUA 1
PHMUA 2-1972 | 1967
1956
1961
1962
1972 | 75
67
⁴ 33
150
200 | 271- 348
290- 320
101- 112
627- 669
668- 698 | -87
-92
-53
-88
-96 | 11/09
11/09
11/07
11/01
11/01 | -83 11/07
-87 11/17
-50 11/04
-96 11/14
-97 11/14 | 4
5
3
-8
-1 | | *7-404
*7-410
*7-411
*7-422
7-426 | 395041
395238
395124 | 750056
750121
745952 | NJ AMER WC
NJ AMER WC
TAVISTOCK CLUB
NJ AMER WC
NJ AMER WC | RUNNEMEDE 19
SOMERDALE 14
COUNTRY CLUB
ASHLAND 17
VOORHEES 21 | 1958
1956
1 1968
1957
1959 | 67
95
30
68
129 | 297- 339
3441
219- 247
379- 421
422- 482 | -83
-95
-81
-91
-87 | 11/07
11/09
11/09
11/09
11/09 | -82 11/15
-94 11/14
-84 11/09
-107 11/02
-92 11/10 | 1
-3
-16
-5 | | *7-477
*7-521
*7-573
7-600
*15- 01 | 395355
394658 | 745931
750738
750421 | CLEMENTON WD | NEW BKLYN 2 OI
CWD 10
COAST GUARD 2
LAKELAND H 4
CWD 3 | BS 1961
1978
1966
1975
1956 | 111
180
11
45
133 | 829- 839
600- 629
389
405- 453
746- 800 | -73
NM
-9
-75
-69 | 11/08
NM
12/02
11/02
11/14 | -77 11/18
-103 11/10
-9 11/18
-82 11/10
-77 11/15 | -4
NA
0
-7
-8 | | *15- 03
15- 06
15- 08
15- 09
15- 11 | 394627
394628
394746 | 750813
750813
750511 | CLAYTON WD
WOODBURY WD
WOODBURY WD
DEPTFORD TWP MUA
DEPTFORD TWP MUA | 4-1973
SEWELL 1A
SEWELL 2A
DTMUA 5
DTMUA 2 | 1973
1967
1973
1971
1958 | 140
20
21
78
58 | 670- 740
263- 308
244- 307
414- 447
255- 281 | NM
-56
-53
-64
-53 | NM
11/08
11/08
11/03
11/03 | -71 11/15
-59 11/10
-61 11/10
-68 10/02
-49 11/10 | NA
-3
-8
-4
4 | | *15 - 28
*15 - 60
15 - 62
*15 - 63
*15 - 127 | 394206
394241
394308 | 750758
750642
750702 | EAST GREENWICH WD
GLASSBORO WD
GLASSBORO WD
GLASSBORO WD
LEONARD, W | EGWD 2
GWD 3
GWD 2
GWD 4
5 | 1956
1955
1947
1961
1958 | 70
150
145
150
140 | 191 - 216
562 - 612
562 - 602
549 - 599
3524 | - 23
- 70
- 72
- 65
- 49 | 11/01
11/09
11/09
11/09
11/14 | -23 11/07
-66 11/10
-79 11/28
-64 11/28
-50 11/10 | 0
-7
1
-1 | | *15-129
15-147
*15-187
15-191
*15-192 | 394706
394543
394629 | 751951
750746
750859 | SOUTH JERSEY WC
SHOEMAKER, R A
INVERSAND CO
MANTUA TWP MUA
MANTUA TWP MUA | SJWC 1
1
#2
MTMUA 2
MTMUA 5 | 1950
1954
1956
1965
1957 | 35
18
45
472
480 | ³ 263
33 - 39
325 - 355
336 - 368
315 - 337 | -30
5
NM
4-51
4-43 | 11/14
11/18
NM
11/08
11/07 | -31 11/10
3 11/03
-69 11/08
-58 11/09
-38 11/09 | -1
-2
NA
-7
5 | | *15-194
15-226
*15-227
*15-240 | 394411
394426 | 750745
750747 | MANTUA TWP MUA
PITMAN WD
PITMAN WD
DEL MONTE CORP | MTMUA 4
PWD P2
PWD P3
9 | 1969
1947
1960
1963 | 10
130
99
32 | 230 - 265
475 - 515
447 - 487
190 - 231 | -53
-70
-64
-19 | 11/07
11/14
11/14
11/18 | -51 11/09
-82 11/14
-71 11/14
-21 11/01 | -12
-7
-2 | | *15-248
*15-253
15-260
*15-261
15-268 | 394437
394517
394520 | 750249
750300
750218 | WASHINGTON TWP MUA | WTMUA 5
6(FRIES MLS 1
8(BELS LK WC2
WTMUA 1
WTMUA 4 | 1973
) 1964
) 1968
1959
1972 | 125
152
130
100
77 | 559- 618
584- 652
544- 620
581- 612
369- 417 | -68
-76
-75
-81
-79 | 11/08
11/08
11/08
11/08
11/08 | -80 11/08
-81 11/08
-82 11/08
-85 11/17
-78 11/08 | -12
-5
-7
-4
1 | | 15-275
*15-276
*15-281
*15-297 | 394821
394912 | 751026
751026 | WENONAH WD
W DEPTFORD TWP WD
W DEPTFORD TWP WD
HUNTSMAN POLYP CO | WWD 2
WDTWD 4
WDTWD 3
SHELL 6 OBS | 1951
1963
1957
1962 | 50
60
61
21 | 268- 310
242- 289
227- 243
113- 118 | -53
-44
-40
-11 | 11/03
11/03
11/03
10/31 | -62 11/14
-46 11/14
-37 11/14
-11 11/15 | -9
-2
3
0 | | *15-303
*15-330
*15-332
*15-339 | 394858
395009 | 750845
750922 | PENNWALT CORP
WOODBURY HGTS BORO
WOODBURY WD
GRASSO, J S | TEST WELL 1
1 HELEN AVE
PARKING LOT 3
1 | 1969
1972
1946
1969 | 10
40
50
90 | 84- 114
190- 235
148- 188
247- 267 | -8
-50
-45
-19 | 11/04
11/07
10/31
11/17 | -9 11/10
-49 11/08
-38 11/10
-20 11/09 | - 1
1
7
- 1 | Table 9. Water-level data for wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988--Continued | Well
number | Location
Lati- Longi-
tude tude | -
Owner | | ~4 | titude
land
rface ¹
(ft) | Screened interval 2 (ft) | Water le
1983
Alti-
tude ¹ Date
(ft)(mo/day) | vel
1988
Alti-
tude ¹ Date
(ft)(mo/day) | | |--|---|---|--|--|--|--|---|--|----------------------------| | 15- 342
15- 345
*15- 346
15- 355
*15- 361 | 394642 751823
394529 751340 | DEL MONTE CORP
MUSUMECI, PETER
TOMARCHIO, ALFRED
EAST GREENWICH WD
GLASSBORO WD | 10
1
1
EGWD 3
GWD 5 | 1967
1954
1977
• 1977
1973 | 60
62
80
42
149 | 192- 279
94- 100
267- 343
205- 245
610- 657 | -21 11/18
-12 11/14
-24 11/08
-30 11/01
NM NM | -21 11/02
-12 11/03
-29 11/14
-28 11/07
-83 11/15 | 0
0
-5
2
NA | | *15- 378
*15- 379
*15- 433
15- 511
15- 546 | 394601 751005
394631 750517
394828 751656 | NJ TURNPIKE AUTH
MANTUA TWP MUA
WASHINGTON TWP MUA
FEHLAUER, ALBERT
CHEMICAL LEAMAN | MAINT 1
MTMUA 6
WTMUA 9
2
CL2 | 1973
1981
1977
1981 | 100
145
135
10
10 | ³ 98
368- 398
512- 552
40- 47
20- 30 | NM NM
NM NM
-69 11/15
NM NM
3 11/16 | -26 12/01
-40 11/09
-78 11/08
1 11/02
3 11/23 | NA
NA
- 9
NA
O | | 15- 554
15- 560
15- 564
*15- 617
15- 674 | 394800 751913 | | S-2A
S-11A
S-9
SHIVELER UPPE
OBS 1 | 1983
1983
1983
R 1985
1977 | 9
11
7
31
9 | 4- 14
5- 14
42- 52
60- 70
21- 40 | 2 11/16
8 11/16
NM NM
NM NM | 1 11/21
6 11/21
3 11/15
-7 11/14
4 11/07 | -1
-2
NA
NA
NA | | *15- 702
15- 707
*15- 728
*15- 741
15- 773 | 395053 751346
394800 751936
394808 751724
394652 751004
395206 751118 | USGS
USGS
USGS | OBS 3
GAVENTA W TAB
STEFKA-4 OBS
MANTUA SHAL O
NATIONAL PARK | 1987
BS 1986 | 7
7
5
82
10 | 8- 18
6- 7
46- 56
293- 313
30- 50 | NM NM
NM NM
NM NM
NM NM | 0 11/07
2 11/15
-7 11/15
-46 11/16
-7 11/15 | NA
NA
NA
NA | | 15- 777
15- 779
15- 843 | 395202 <i>7</i> 51127
395223 <i>7</i> 51117
395055 <i>7</i> 51415 | USGS | NATIONAL PARK
NATIONAL PK 1
P-13 | | 15
5
20 | 57- 77
25- 35
38- 40 | NM NM
NM NM
NM NM | 0 11/15
-5 11/15
1 11/08 | NA
NA
NA | | *15-1000
15-1012
*15-1013
*15-1031 | 394710 751158
394351 750611 | RAY ANGELINI INC
PHILLIPS, NELSON O
SCHULTES, RICHARD J
MATLACK TRUCKIŅG | ANGELINI 1
MILLSTREAM FH
SCHULTES 1
MTLCK TRK MW- | 1985 | 75
40
105
47 | 354- 359
250- 260
483- 493
95- 105 | MM MM
MM MM
MM MM
MM MM | -71 11/16
-43 11/14
-65 11/18
-9 11/17 | NA
NA
NA
NA | | *21- 18
*21- 19
21- 21
21- 46
21- 81 | 401608 743354
401631 743246
401119 743810 | CAPAZELLO FARMS
E WINDSOR MUA
MCGRAW HILL PUB
SANTOSUSSO, JA
HIGHTSTOWN WD | 1-IRR
EWMUA 5
MCGRAW HILL 1
1-1957
HIGHTSTOWN 1 | 1941
1966
1958
1957
1946 | 110
90
97
60
84 | ³ 250
133- 181
153- 173
138- 141
181- 205 | 47 10/27
68 10/21
53 10/20
NM NM
53 10/20 | 44 10/17
69 10/18
52 10/17
-70 11/15
51 10/17 | -3
1
-1
NA
-2 | | *21- 84
21- 102
*21- 103
23- 15
23- 18 | 401240 743741
401309 743702
401842 743055 | HIGHTSTOWN WD
MERCER MOBLE HOME
SUBURBAN NATURAL GAS
CRANBURY TWP WD
CARTER WALLACE | HIGHTSTOWN 2
1973 WELL
SUBURBAN 1
CTWD 2
CW 2 | 1947
1973
1953
1917
1957 | 84
110
110
⁴ 95
98 | 181- 205
145- 155
183- 186
3110
161- 201 | 54 10/20
34 10/24
59 10/07
65 12/19
56 10/30 | 51 10/17
38 10/25
58 10/28
64 10/26
53 10/23 | -3
4
-1
-1
-3 | | 23 · 19
*23 · 22
23 · 24
23 · 32
23 · 35 | 401857 742908
401858
743015
401918 743048 | CARTER WALLACE
CARTER WALLACE
DANSER, CLENDON
BARCLAY FARMS
GENERAL FOODS | CW 4
CW 9
IRRIGATION 1
1 (C.DANSER) | 1958
1951
1959
1954
1956 | 120
120
115
120
138 | 161- 201
3209
3152
3152
167- 197 | NM NM
52 10/30
54 10/27
62 10/27
58 10/21 | 78 10/23
53 10/23
57 10/25
61 10/25
61 10/21 | NA
1
3
-1
3 | | 23- 51
*23- 96
*23- 98
23- 100
*23- 101 | 402432 742212
402236 742535
402051 742604
402053 742603
402030 742115 | NJ AMER WC
NJ AMER WC | BUSCH 6
6(4-R)
JAMESBURG 6
JAMESBURG 7
1973 | 1973
1972
1954
1955
1973 | 37
40
50
45
50 | 51- 71
32- 42
99- 120
118- 129
211- 223 | NM NM
37 10/18
44 10/20
43 10/20
NM NM | 6 10/24
36 10/20
41 10/27
45 10/27
11 10/26 | NA
-1
-3
2
NA | | *23- 109
23- 131
*23- 142
23- 143
23- 145 | 402347 742038 | DUHERNAL WC
OLD BRIDGE MUA | DUHERNL OBS 2
DUHERNAL 8
BROWNTOWN 1
DUHERNL OBS 2
11-1972 | 1938
1965 | ⁴ 24
24
90
30
30 | 3 101
65- 80
199- 249
81- 91
80- 120 | -1 11/01
NM NM
4 10/17
5 10/31
6 10/19 | -2 10/17
7 12/07
9 10/19
5 10/17
12 12/15 | -1
NA
5
0
6 | | 23- 151
23- 155
23- 156
23- 159
23- 161 | 402352 742224
402355 742226
402353 742056
402353 742152
402358 742211 | DUHERNAL WC
OLD BRIDGE MUA
DUHERNAL WC | DUHERNAL OBS
DUHERNAL 4
10-1972
DUHERNAL OBS
DUHERNAL 2 | 1938
1972 | ⁴ 25
21
30
20
18 | 64- 75
52- 74
90- 120
55- 63
62- 73 | 7 ⁵ 03/29
4 10/31
NM NM
8 10/31
2 10/31 | 3 10/18
4 12/07
11 10/19
8 10/17
-6 10/18 | -4
0
NA
0
-8 | | 23- 172
*23- 173
23- 174
*23- 180
*23- 182 | 402404 742205
402406 741620
402407 741924
402438 742129
402449 741819 | OLD BRIDGE BD ED
OLD BRIDGE MUA
DUHERNAL WC | DUHERNAL 1
IRA-71
BROWTOWN OBS
DUHERNAL OBS
BROWNTOWN | 1938
1971
1961
1 1938
1932 | 13
60
45
19
31 | 55- 75
173- 193
3150
57- 67
66- 71 | -9 10/31
-7 10/17
6 10/17
4 10/31
15 10/19 | -18 10/18
-8 10/20
9 10/19
4 10/18
13 10/20 | -9
-1
3
0
-2 | Table 9. Water-level data for wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988--Continued | Well | <u>Locati</u>
Lati- | on
Longi | - | Local Ye | | Altitude
of land
surface ¹ | Screened interval 2 | 19
Alti | | 198
Alti- | | Change in
water
level
(1983-88) | |--|----------------------------|----------------------------|--|---|--------------------------------------|---|--|--------------------------------|--|----------------------------|---|--| | number | tude | tude | Owner | number dr | illed | (ft) | (ft) | (ft) | (mo/day) | (ft)(| mo/day) |) (ft) | | 23- 185
23- 190
23- 195
*23- 205
23- 208 | 402526
402537
402700 | 741603
742001
741454 | NJ WATER POLICY
NAPPI TRUCK CO
PERTH AMBOY WD
OLD BRIDGE MUA
OLD BRIDGE MUA | PERTH AMBOY 1
2-1965
PERTH AMBOY 5
LAWRENCE HAR 8
1-HOPE PK | 1968
1965
1965
1948
1956 | 14
140
15
60
140 | 27- 30
3 253
50- 80
193- 213
167- 181 | NM
-5
-4
20 | NM
10/25
10/20
10/17
10/19 | 2
5
-5 | 10/21
10/17
10/17
10/19
10/19 | NA
-1
10
-1
-2 | | 23- 222
23- 227
*23- 228
*23- 244
23- 250 | 402012
402015
402131 | 742833
742757
742245 | MONROE TWP MUA
GENERAL FOODS
MONROE TWP MUA
REESE, AUGUST
DUHERNAL WC | FORSGATE 5
SERVICE 3
FORSGATE 3 OBS
1971
DUHERNL OBS 10 | 1954
1967
1961
1971
1938 | | 182- 202
168- 198
128- 138
152- 158
83- 93 | NM
60
58
-7
5 | NM
10/21
10/20
10/19
11/01 | 60
55
-3 | 10/20
10/21
10/17
10/24
10/17 | NA
0
-3
4
0 | | *23 - 292
23 - 294
*23 - 344
23 - 346
23 - 351 | 402124
402558
402604 | 742824
742013
742004 | MONROE TWP MUA
KORLESKI
SAYREVILLE WD
SAYREVILLE WD
SAYREVILLE WD | FORSGATE 2 OBS
KORLESKI 1
SWD 2 OBS
SWD B
SWD 1 OBS | 1961
1957
1958 | 107
140
22
27
35 | 93- ₃ 104
3104
31- 37
71- 81
76- 82 | 71
68
13
NM
17 | 10/27
10/25
10/19
NM
10/19 | 73
14
16 | 10/20
10/19
10/18
10/18
10/18 | 0
5
1
NA
0 | | 23 - 356
23 - 359
23 - 361
23 - 367
23 - 369 | 402618
402619
402624 | 741952
741958
741944 | SAYREVILLE WD
SAYREVILLE WD
SAYREVILLE WD
SAYREVILLE WD
SAYREVILLE WD | SWD F
SWD D
SWD E
SWD G
SWD H | 1959
1958
1958
1960
1960 | 28
46 | 53 - 74
64 - 75
39 - 62
56 - 87
67 - 83 | NM
20
NM
NM
34 | NM
10/19
NM
NM
10/19 | | 10/19
10/18
10/18
10/18
10/18 | NA
-4
NA
NA
-2 | | *23 - 400
23 - 403
23 - 414
23 - 433
23 - 442 | 402745
402825
402555 | 741631
741632
742133 | SAYREVILLE WD
SAYREVILLE WD
SOUTH AMBOY WD
NJ WATER POLICY
SPOTSWOOD WD | R-1973
SWD Q-1973
SAWD 10
SO RIVER 4
SWWD 3 | 1973
1973
1967
1968
1973 | 40
10
20 | 57- 82
78- 136
38- 48
30- 33
64- 78 | NM
5
5
10
19 | NM
10/18
10/18
10/17
10/27 | 4
2
5
8
18 | 10/18
10/18
10/18
10/21
10/21 | NA
-3
0
-2
-1 | | 23- 460
23- 461
*23- 490
23- 494 | 402421
401925 | 742233
742620 | SCHWEITZER, P J
SCHWEITZER, P J
MONROE TWP MUA
SPOTSWOOD WD | 9
4R
8-R
SWWD 5 | 1961
1961
1974
1978 | | 53- 63
49- 59
287- 325
83- 97 | NM
NM
43
14 | NM
NM
10/20
10/27 | 11
20
48
14 | 10/18
10/18
10/20
10/19 | NA
NA
5
0 | | 23 - 497
23 - 505
23 - 507
* 23 - 508
23 - 534 | 401855
401801
401801 | 743229
743154
743154 | FORSGATE
DANL, LEROY
DANSER, FRANK
DANSER, FRANK
PERTH ÁMBOY WD | HWH WELL
DYAL2-1967
UNUSED DOM
DOMEST-73
OLD DEEP 8 | 1975
1967
1973 | 7 90
105 | 109- 114
20- ₃ 80
3 130
3 90 | NM
65
65
65
NM | NM
10/24
10/19
10/19
NM | 27
63
63
63
-8 | 10/26
10/26
10/24
10/24
10/19 | NA
-2
-2
-2
NA | | 23- 557
23- 565
23- 567
23- 571
23- 581 | 401958
401950
402531 | 742819
742750
741932 | SOUTH AMBOY WD
MONROE TWP MUA
MONROE TWP MUA
PERTH AMBOY WD
PARLIN SUPPLY CO | SAWD 9A
ROSSMORE GC 17
MTMUA 16A
PERTH AMBOY 7
1 | 1979
1980
1983
1983
1974 | 130
137
15 | 48- 58
165- 197
163- 244
67- 82
24- 44 | 14
42
51
NM
NM | 10/18
10/20
10/20
NM
NM | | 10/18
10/20
10/20
10/18
10/17 | 0
10
3
NA
NA | | 2:3- 595
2:3-1156
2:3-1157
2:3-1159
2:3-1172 | 402225
402424
402720 | 741820
742519
741950 | OLD BRIDGE DEV CORP
JOCAMA CONSTRUCT CORP
RAAB, GEORGE
E I DUPONT
E I DUPONT | SS4
JOCAMA BLDG 3
RAAB HAND DUG
PM8D
PM-1D PARLIN PT | 1981
1982
1930
1987
1987 | 60
109 | 285 - 290
230 - 238
336
95 - 105
68 - 78 | NM
NM
NM
NM | NM
NM
NM
NM | 74
42 | 10/21
10/26
10/19
10/25
10/25 | NA
NA
NA
NA
NA | | 25- 04
*25- 13
25- 33
*25- 34
*25- 37 | 401137
401556
401558 | 740121
740915
740908 | ALLENTOWN WD
AVON WD
NAD EARLE
NAD EARLE
HOMINY HILLS GOLF CL | AWD 2
AWD 4
NAD EARLE 1
NAD EARLE 2(B)
GLF CLB 2-1963 | 1975
1974
1944
1944
1963 | 29 1
126
135 | 212- 262
,105-1,165
775- 810
810- 836
686- 706 | 30
-27
NM
-33
-35 | 10/21
10/25
NM
10/20
10/19 | -29
-32
-34 | 11/05
10/21
11/01
10/24
01/03 | -30
-2
NA
-1
5 | | *25- 45
*25- 56
*25- 62
25- 81
25- 85 | 401744
401134
401412 | 742135
741014
741605 | FLOCK AND SONS
ENGLISHTOWN BORO WD
ROKEACH & SONS
FREEHOLD TWP WD
3M COMPANY | 1
ENGLISHTOWN 2
4-DEEP
KOENIG LANE 4
1 | 1963
1965
1961
1972
1957 | 66
70
80
130
120 | 649- 677
363- 384
831- 885
633- 673
653- 700 | -39
1
-31
NM
-43 | 10/19
10/19
11/02
NM
10/19 | 18
- 29
-37 | 10/26
10/26
10/28
10/24
10/28 | - 1
17
2
NA
1 | | *2:5- 91
*2:5- 97
2:5- 98
*2:5- 101
2:5- 103 | 401625
401633
401635 | 741501
741726
741721 | BROCKWAY GLASS
FREEHOLD TWP WD
FREEHOLD BORO WD
FREEHOLD BORO WD
FREEHOLD TWP WD | BROCKWAY 2
6-OLD SO.GULF2
FREEHOLD 4
FREEHOLD 5
7-74 | 1969
1966
1969
1970
1974 | 195
110 | 632- 685
596- 656
529- 583
520- 619
478- 575 | -47
-47
NM
-26
-36 | 10/24
10/25
NM
10/26
10/26 | -38
-30
-33 | 10/25
10/24
10/24
10/24
10/24 | 13
9
NA
-7
-3 | | 25- 111
*25- 112
25- 116
*25- 117
25- 118 | 402537
402400
402401 | 740933
735912
735920 | SHORELANDS WC 4
SHORELANDS WC 4
HIGHLANDS WD
HIGHLANDS WD
HIGHLANDS WD | W KEANSBURG 1
W KEANSBURG 2
HWD 2 NEW
HWD 4
HWD 1 | 1958
1960
1961
1973
1949 | 10
10
20 | 326- 366
312- 352
600- 660
630- 680
649- 709
| -38
-35
-18
NM
-21 | 10/17
10/17
11/03
NM
11/03 | -16
-11 | 10/18
10/18
10/27
10/27
10/27 | -2
-4
2
NA
1 | Table 9. Water-level data for wells screened in the upper aguifer of the Potomac-Raritan-Magothy aguifer system, 1983 and 1988--Continued | Well | Locat
Lati- | tion
Long | <u>r</u> | Local Ye | | ltitude
f land
urface | Screened interval 2 | Wa
1983
Alti-
tude ¹ | ter lev | /el
1988
Alti-
tude ¹ | Date | Change in
water
level
(1983-88) | |--|----------------------------|--------------------------------------|--|---|--------------------------------------|--|---|--|---|---|---|--| | <u>number</u> | tude | tude | Owner | number di | rilled | (ft) | (ft) | (ft)(m | o/day) | (ft)(m | o/day) | (ft) | | 25-119
*25-121
*25-146
*25-154
*25-175 | 402023
402327
402445 | 741100
741114
741019 | HIGHLANDS WD
PENNWALT CORP
BELL TELEPHONE CO
SHORELANDS WC 2
ADELPHIA WC | HWD 3
1 (PENNWALT)
CRAWFRD HILL 1
W KEANSBURG 3
1(HOVBILT CO) | 1973
1960
1962
1964
1969 | 15
80
280
73
100 | 400- 430 | - 19
- 33
- 35
- 35
- 34 | 11/03
10/19
10/17
10/17
10/28 | -17
-35
-36
-38
-40 | 10/27
10/27
10/26
10/18
10/26 | 2
-2
-1
-3
-6 | | *25 - 177
*25 - 195
25 - 196
*25 - 197
*25 - 206 | 402621
402628
402535 | 740743
740744
741214 | SCHROTH, EMIL A KEANSBURG MUA KEANSBURG MUA KEYPORT BORO WD KEYPORT BORO WD | SCHROTH KWD 5A KWD 3 KEYPORT 7 KEYPORT 4 OBS | 1969
1954
1942
1976
1939 | 95
⁴ 15
12
35
14 | 781 - 801
290 - 350
308 - 348
304 - 354
225 - 249 | - 18
4 - 35
- 33
- 26
- 15 | 10/25
10/21
10/21
10/18
10/19 | -28
-32
-30
-25
-17 | 10/26
10/20
10/20
10/19
10/19 | -10
3
3
1
-2 | | 25-207
25-218
*25-220
25-244
*25-251 | 401557
401537
401848 | 742318
742012
741704 | KEYPORT BORO WD
BOY SCOUTS AMER
BATTLEGROUND CC
GORDONS CORNER WC
GORDONS CORNER WC | KEYPORT 6 QUAIL HILL 2 IRRIGATION GORDONS 7 GORDONS 9 | 1970
1967
1967
1969
1971 | 11
250
120
160
128 | 247- 277
510- 527
539- 569
524- 594
478- 528 | -14
13
-29
-43
-39 | 10/19
10/24
10/21
10/19
10/19 | -27
12
-29
-48
-43 | 10/19
10/20
10/25
10/20
10/20 | -13
-1
0
-5
-4 | | *25 - 259
*25 - 282
25 - 284
25 - 288
25 - 292 | 402507
402515
402349 | 741344
741450
741232 | MARLBORO ST HOSP
BAYSHORE SEW AUTH
MATAWAN BORO WD
ABERDEEN TWP MUA
ABERDEEN TWP MUA | STATE HOSP 12
BAYSHORE 1
MATAWAN BORO 3
MATAWAN MUA 3
MATAWAN MUA 1 | 1950
1976
1956
1967
1962 | 155
10
90
83
87 | 508- 593
245- 260
231- 271
345- 425
341- 414 | -26
-13
-7
-33
-33 | 10/18
10/18
10/19
10/19
10/19 | -27
-13
-11
-36
-34 | 10/25
10/17
10/17
10/17
10/18 | -1
0
-4
-3
-1 | | 25-293
*25-294
25-295
25-303
*25-316 | 402428
402427
402106 | 741345
741348
740810 | ABERDEEN TWP MUA
MATAWAN BORO WD
MATAWAN BORO WD
BAMM HOLLOW CC
STATE OF NJ | MATAWAN MUA 2
MATAWAN BORO 1
MATAWAN BORO 2
BHCC 1
SANDY HOOK SP1 | 1962
1944
1943
1966
1965 | 73
20
20
70
11 | | -28
-22
-21
NM
-4 | 10/19
10/19
10/19
NM
10/24 | -29
-24
-23
-61
-9 | 10/17
10/17
10/17
10/27
10/19 | - 1
- 2
- 2
NA
- 5 | | *25-321
*25-322
*25-332
*25-333
25-334 | 401157
401930
401214 | 742418
735841
740355 | NATIONAL PK SERV
RESTINE, P J
MON BCH CLD STR
NJ AMER WC
NJ AMER WC | FT HANCOCK 4
RESTINE 1
MBCS 1971 DEEP
JUMPING BR 5
JUMPING BR 4 | 1941
1956
1971
1956
1951 | 5
210
10
35
23 | 817- 850
1,000-1,072 | | 10/24
10/31
10/20
10/25
10/25 | -3
-4
-17
-41
-37 | 10/19
10/27
09/07
10/28
10/28 | 0
-2
1
-8
0 | | 25 - 344
*25 - 345
*25 - 351
*25 - 358
25 - 360 | 401233
401323
402047 | 740100
740156
740420 | NJ AMER WC
NJ AMER WC
NJ AMER WC
RED BANK WD
RED BANK WD | LAYNE 2
LAYNE 3-1958
WHITESVILLE
1B-1950
4-75 | 1939
1958

1950
1975 | 20
20
18
40
146 | ³ 777
637- 687 | NM
- 24
- 38
- 33
- 34 | NM
10/25
10/26
10/24
10/24 | -27
-27
-40
-37
-34 | 10/28
10/28
10/28
10/27
10/27 | NA
-3
-2
-4
0 | | *25-362
25-419
25-420
*25-434
25-436 | 402632
402634
400926 | 741049
741051
740749 | ROOSEVELT WD
UNION BEACH WD
UNION BEACH WD
STATE OF NJ
BRISBANE C T C | ROOSEVELT 3
UBWD 1 1962
UBWD 2 1969
ALLAIRE S P 3
1 (OLD 3-1971) | 1956
1962
1969
1967
1971 | 198
10
10
40
60 | 235 - 285
262 - 289
1,004 - 1,029 | 30
-23
-13
-42
-41 | 10/31
10/18
10/18
10/20
10/28 | 28
-21
-19
-45
-43 | 10/27
10/18
10/18
10/26
10/26 | -2
2
-6
-3
-2 | | 25-456
*25-457
*25-459
*25-462
25-493 | 401551
402219
402717 | 742212
740337
740816 | INT FLAVOR FRAGRANCE
KNOB HILL CC
NAVESINK, CC
KEANSBURG AMUSE
HOWELL TWP | IFF-3R
KNOB 1-74
1-78
1-69
1-1975/YELBRK ⁴ | 1976
1974
1978
1969
1975 | 4 17
108
80
10
4 115 | 465 - 495
551 - 612 | 4 - 26
6
- 24
- 16
4 - 35 | 10/30
10/20
10/26
10/21
11/01 | -26
4
-25
-15
-38 | 10/21
10/25
10/27
10/20
10/25 | 0
-2
-1
1
-3 | | *25-496
*25-500
25-501
25-502
25-514 | 400849
401215
401411 | 743403
740358
741608 | ATLANTIC HIGHLANDS WD
COLLINS
NJ AMER WC
FREEHOLD TWP WD
INT FLAVOR FRAGRANCE | AHWD 4
1
JUMPING BR 6
8
IFF-2R | 1980
1981
1981
1981
1983 | 15
88
30
125
⁴ 14 | 1,000-1,075 | -51 | 10/21
10/20
NM
10/25
10/30 | -19
0
-48
-43
-27 | 10/24
10/28
10/28
10/24
10/21 | - 1
- 4
NA
8
- 1 | | *25-550
25-551
25-564
25-565
25-567 | 401258
401918
402704 | 741627 | FREEHOLD TWP WD
FREEHOLD TWP WD
GORDONS CORNER WC
USGS
USGS | OBS 9
9
11
CONASCONK PT.
UB WATER TOWER | 1984
1984
1984
1985
1986 | 105
105
138
10
10 | 201- 211 | NM
NM
NM
NM | NM
NM
NM
NM | -39
-42
-35
-15
-23 | 10/24
10/24
10/20
10/17
10/18 | NA
NA
NA
NA | | 25-568
*25-639
25-705
*29-70 | 401105
401518 | 741100
741202
742227
740359 | | JCP&L
HOWLL TWP 5 OB:
MANALAPAN 2
MONTEREY 1 | 1986
s 1988
1984
1967 | 10
112
120
5 | 891 - 901 | NM
NM
NM
- 28 | NM
NM
NM
10/19 | -12
-35
-76
-26 | 10/20
10/20
10/24
11/29 | NA
NA
NA
2 | | *29-100
*29-134
*29-238
29-453
*29-504 | 400329
400824
395808 | 741947
742630
740416 | NJ AMER WC
JACKSON TWP MUA
JACKSON TWP MUA
LAVALLETTE WD
NJ AMER WC | NORMANDY 3
SCM 1
JACKSON 7
LWD 4
MANTOLOKING 7 | 1954
1961
1974
1960
1960 | 130
5 | | - 4
5 - 28 | 10/19
11/17
10/28
10/20
10/28 | -24
-31
-8
-26
-25 | 11/29
10/24
10/25
11/22
11/29 | -3
4
2
2 | Table 9. Water-level data for wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988--Continued | Well
number | Locati
Lati-
tude | on
Longi-
tude | Owner | Local
number | Year
drilled | Altitude
of land
surface
d (ft) | Screened | Alt | Water le
983
1-
de ¹ Date
)(mo/day) | 1988
Alti-
tude ¹ Date | | |--|---|----------------------------|--|--|--|--|---|---------------------------------|--|---|----------------------------| | *29-524
*29-531
*29-577
*33- 74
33- 75 | 400454
395741
394241 | 740414
740437
752201 | PT PLEASANT WD
PT PLEASANT WD
LAVALLETTE WD
OLDMANS TWP WD
MACKANNAN, C | PPWD 7
PPWD 5
LWD 5
1 (AUBURN W C)
CM1 AUBURN HI | 1967
1960
1978
1968
1941 | 18 ′ | 1,183-1,260
1,256-1,342
1,394-1,498
185-206
129-134 | -33
-33
-22
NM
4-12 | 10/25
10/25
10/20
NM
11/17 | -30 11/30
-29 11/30
-20 11/22
-13 11/09
-14 11/14 | 3
4
2
NA
-1 | | *33 - 76
*33 - 105
33 - 109
*33 - 111
33 - 112 | 393458
393734
393746 | 752945
753149
752955 | DAWSON, H W
LOVELAND, SC
SIEGFRIED CHEM
PENNSVILLE TWP WD
PENNSVILLE TWP WD | DAWSON 1
DILWORTH
1973-1
HOOK RD OBS
PTWD 4 | 1957
1950
1973
1971
1965 |
27
10
5
10
10 | 118- ₃ 123
263
116- 131
190- 235
117- 137 | 0
-22
-1
-15
NM | 11/10
11/07
12/08
11/09
NM | 2 11/22
-26 11/18
-2 12/22
-17 11/21
-10 11/21 | 2
-4
-1
-2
NA | | 33-126
33-128
*33-253
33-316
*33-325 | 394102
393348
394121 | 752946
752755
752921 | E I DUPONT
E I DUPONT
USGS
E I DUPONT
E I DUPONT | RANNEY 7
RANNEY 6
SALEM 3 OBS
102
CARNEY PT 3 | 1966
1966
1965
1970
1933 | 15
15
3
5 | 52- 140
50- 60
335- 340
³ 85
³ 102 | 2
1
-23
NM
-8 | 11/16
11/16
09/29
NM
11/14 | -2 11/21
-4 11/21
-27 11/22
-7 11/22
-10 11/21 | -4
-5
-4
NA
-2 | | 33-326
33-333
*33-342
*33-355
*33-360 | 394208
394236
393914 | 752859
752724
751930 | E I DUPONT
E I DUPONT
NJ WATER POLICY
WOODSTOWN ICE COMP
PENNSVILLE TWP WD | CARNEY PT 4
CARNEY PT 5
PENNS GROVE 24
C1
PTWD 5 | 1955
1957
4 1941
1927
1979 | 5
18
58
10 | ³ 86
³ 81
46-
51
³ 360
101- 117 | NM
-3
1
-22
-8 | NM
11/14
11/10
11/18
12/08 | -4 11/22
-3 11/22
-1 11/22
-24 11/09
-11 11/21 | NA
0
-2
-2
-3 | | *33-361
33-408
33-439
*33-671
*PH-751 | ⁴ 394450
394449
393954 | 752410
752351
753013 | PENNS GROVE WSC
PEDRICKTOWN SWIM
BOND, WILLARD K
PENNSVILLE TWP WD
SAF AMERICA INC | SCHULTES 4
SWIM 1
1
PTWD 3A
#2 SAF | 1978
1960
1982
1988
1979 | 13
15
25
7
10 | 44- 54
26- 36
49- 59
87- 102
62- 77 | -8
1
NM
NM
NM | 11/10
11/15
NM
NM
NM | -9 11/22
1 11/16
5 11/22
-5 11/21
-6 11/08 | -1
O
NA
NA
NA | | *Jd25-09
*Eb23-23 | 393450
393316 | 753842
754216 | SAF AMERICA INC
TEXACO
USGS (DEL)
USGS (DEL) | #3 SAF
OBS 3A
LUMS POND B
DEAKYNEVILLE ! | 1979 | 9
57
60
18 | 60- 75
114- 156
288- 292
627- 660 | NM
NM
NM | NM
NM
NM
NM | -7 11/08
-7 11/14
35 11/15
-8 11/14 | NA
NA
NA | Datum is sea level. Depth below land surface. ³ Well depth. Revised from Eckel and Walker, 1986 ⁵ Water level measured in 1984. ⁶ Water level measured in 1989. Figure 12. Water-level hydrographs for observation wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system near centers of large ground-water withdrawals, 1983-89. Figure 13. Water-level hydrographs for observation wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system near areas of local ground-water withdrawals, 1983-89. Figure 14. Water-level hydrograph for an observation well screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system, distant from centers of ground-water withdrawals, 1983-89. Water levels in the middle aquifer define three major cones of depression, which were identified in 1983 (pl. 7). A fourth cone of depression has developed since 1983 in Ocean County. In northern Monmouth and eastern Middlesex Counties, water levels were as low as 116 ft below sea The second major cone of depression, where water levels were as low as 92 ft below sea level, is located in central Camden and western Burlington Counties. The third major cone is located in southern Salem County; water levels were as low as 68 ft below sea level. The fourth cone of depression, in which water levels were as low as 70 ft below sea level, has developed in the middle aquifer in eastern Ocean County. Water-level data from two wells at Brick Township Municipal Utility Authority in Ocean County, wells 29-46 and 29-779, indicate the formation of an areally small but deep cone of depression centered in the Lakewood area. potentiometric surface of the middle aquifer is similar to that of the lower aquifer in many areas. This similarity could be coincidental and related to ground-water withdrawals from both aquifers in these areas, or could be the result of a lateral or vertical hydraulic connection between these aquifers in some areas (Walker, 1983, p. 11). Regionally, the highest water levels, as much as 78 ft above sea level, were measured in wells near the outcrop in central Mercer and Middlesex Counties. Water levels in well 11-137, screened in the saltwater zone in the undifferentiated part of the aquifer system in Cumberland County, were adjusted from 49 ft below sea level to an equivalent freshwater head of 27 ft below sea level on the basis of density, at the time of measurement (Walker, 1983, p. 13). The conversion of observed saltwater head to freshwater head in a given well is accomplished by use of the equation $$p=\rho g1$$, where p is the pressure at the bottom of the casing, ρ is the density of the water in the casing, g is the acceleration due to gravity, and l is the measured length of water column above the casing terminus. By equating the right term of the above equation for freshwater and saltwater columns, $$ho_f g l_f = \rho_s g l_s$$, and $$l_f = (\rho_s / \rho_f) l_s$$ where the subscripts f and s refer to freshwater and saltwater, respectively. The density of freshwater is assumed to be 1,000 grams per cubic decimeter (Cooper and others, 1964). The adjusted head measurement was used to contour the potentiometric surface; however, the unadjusted heads are shown in table 10. This is the only well in the aquifer system where an adjustment was required. ### Water-Level Fluctuations Water-level changes in 285 wells were calculated for the 5-year period. Water levels rose in 57 wells, declined in 200 wells, and were unchanged in 29 wells. The decline in water levels in about two-thirds of the wells located in the middle aquifer over the 5-year period indicates a regional decline in the potentiometric head in most areas. The greatest declines in head were at the center of the cone of depression in northern Monmouth County, where ground-water withdrawals caused water levels to fall from 70 to 116 ft below sea level. Water-level recoveries in two wells, 25-153 and 25-467 (West Keansburg Water Company #4 and #5, respectively), did not return to static conditions following short-term withdrawals (Glen Carleton, U.S. Geological Survey, written commun., 1989). Withdrawals from well 25-153 increased from 255.7 Mgal/yr in 1987 to 287.5 Mgal/yr in 1988 and decreased to 225.5 Mgal/yr in 1989. Withdrawals from well 25-467 increased from 218 Mgal/yr in 1987 to 245.8 Mgal/yr in 1988 and decreased to 199 Mgal/yr in 1989 (R.M. Clawges, U.S. Geological Survey, written commun., 1991). In Monmouth County, water levels declined an average of 14 ft; declines ranged from 2 to 17 ft in areas distant from pumping centers. Water levels declined 15 ft in a localized cone of depression in northeastern Burlington County. In areas minimally affected by ground-water withdrawals, water-level changes ranged from recoveries of 9 ft to declines of 6 ft. In central Camden County, water levels declined as much as 8 ft, whereas in the northern part of the outcrop area, water levels recovered as much as 35 ft. Water levels in Gloucester County, in general, were unchanged throughout the period; however, water levels declined 9 ft in well 15-395 and rose 17 ft in well 15-94. Water levels in Middlesex County declined as much as 18 ft. Small, deep, localized cones of depression formed in the northern and central parts of the county. Water levels in Ocean County declined more than 20 ft during 1983-88, particularly in the areas of Brick Township, Jackson Township, and Lakewood. Water levels in observation well 29-47, located in Brick Township, declined from 41 to 65 ft below sea level (table 10). An increase in withdrawals from the undifferentiated part of the Potomac-Raritan-Magothy aquifer system probably caused a reshaping of the potentiometric surface in the county (pl. 7). Water levels in Salem County declined as much as 11 ft in areas of local ground-water withdrawals; average declines in Salem County ranged from 2 to 4 ft. Hydrographs of water levels in 12 observation wells screened in the middle aquifer and undifferentiated part of the Potomac-Raritan-Magothy aquifer system are shown in figure 15; well locations are shown on plate 7. The hydrographs indicate that water levels declined 3 to 4 ft at wells in Salem, Camden, Burlington, and Middlesex Counties. Water levels in observation well 5-683, located in southeastern Burlington, declined 8 ft. This large decline is the effect of the lateral expansion of the cone of depression in northern Ocean County on water levels in the well. In Ocean County observation well 29-85, located near an area of large ground-water withdrawals, water levels declined 11 ft during the 5-year period. In well 29-19, located near the southeastern coast of Ocean County far from pumping centers in northern Ocean County, heads declined only 5 ft. Water levels in wells in the outcrop area were unchanged, as exemplified by well 23-70. Seasonal water-level fluctuations were greatest (as much as 36 ft) in well 25-272 in northeastern Monmouth county. Table 10. <u>Water-level data for wells screened in the middle aquifer and undifferentiated part of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988</u> [AMER, American; ATL, Atlantic; AUTH, Authority; C, Company; CHEM, Chemical; CONSERV, Conservation; CORP, Corporation; CC, Country Club; CO, County; DEL, Delaware; DEL VAL DIST, Delaware Valley District; DEPT, Department; ELEC, Electric; E-G, Electric and Gas; ENV, Environmental; ft, feet; FC, Field Club; GST, Garden State; GEOL, Geological; HS, High School; INC, Incorporated; INDUS, Industries; INT, International; MEM, Memorial; MCHVIL PNSK WCM, Merchantville Pennsauken Water Commission; mo, month; MUA, Municipal Utility Authority; NJ, New Jersey; NJS, New Jersey State; OBS, Observation well; POLYP, Polypropylene; PL, Power and Light; PROD, Products; RF, Refinery; RUB, Rubber;
SERV, Service; TK, Track; TWP, Township; TSA, Township Sewage Authority; USGS, U.S. Geological Survey; W+L, Water and Light; WC, Water Company; WD, Water Department; WSC, Water Supply Company; ·-, missing data; NM, not measured; NA, not applicable; wells marked with an asterick are shown on plate 8] | | | | | | | Altitude | | 198 | ater le | 1988 | | Change in | |---|----------------------------|----------------------------|---|--|--|-----------------------|---|---------------------------------|---|--------------------------------------|---|----------------------------------| | Well
number | Locat
Lati-
tude | Long
Long
tude | i-
Owner | | 'ear
Irilled | | Screened
interval ²
(ft) | | ¹ Date
mo/day) | Alti-
tude ¹
(ft)(m | Date | (1983-88)
(ft) | | 5- 40
*5- 48
5- 52
*5- 63
*5- 70 | 400800
400455
400213 | 744309
745121
745108 | NJ AMER WC
NJ DEPT DEFENSE
BURLINGTON CO WD
WILLINGBORO MUA
BURLINGTON TWP WD | DVWC 16
NAT GUARD 1
BCWD 1 1943
WMUA 1-OBS ⁴
TEST 1 | 1910
1952
1943
1965
1970 | 83
10
445 | 39- 51
3230
57- 78
284- 294
140- 200 | 8
4
NM
-16
-11 | 10/26
10/25
NM
01/16
11/01 | 6
0
8
-21
-16 | 11/03
11/25
11/02
11/02
10/31 | -2
-4
NA
2 -5
-5 | | 5- 80
5- 84
5- 86
5- 87
5- 90 | 400342
400404
400407 | 744948
745301
745246 | HEISLER, ALBERT
MASONIC HOME
TENNECO CHEM
TENNECO CHEM
TENNECO CHEM | 1
MASONIC 1
TENNECO 5
TENNECO 5-OBS
TENNECO 6-OBS | 1950
1921
1964
1961
1961 | 60
18
14 | 212- 252
174- 194
102- 132
50- 60
55- 65 | NM
-10
NM
-9
-3 | NM
11/01
NM
12/29
12/29 | -12
-16
-3
-14
-9 | 11/01
10/31
10/31
10/31
10/31 | NA
-6
NA
-5
-6 | | 5- 98
5-101
5-106
*5-109
*5-114 | 400543
400617
400632 | 744948
744920
744904 | HERCULES POWDER
HERCULES POWDER
OXIDENTAL CHEM C
NATIONAL GYPSUM
DEMARCO, RALPH | HERCULES 3 HERCULES 3 OBS HOOKER 2R NAT GYP 2 DEMARCO | 1961
1945
1970
1955
1958 | 19
20
22 | 111- 136
94- 104
126- 146
113- 123
388- 392 | 1
2
-4
-3
-8 | 11/04
11/04
11/04
11/04
11/08 | 0
-22
-5
-12 | 11/03
11/03
11/04
11/03
11/03 | -1
0
-18
-2
-4 | | 5-121
*5-122
5-126
*5-127
5-136 | 400941
395929
395938 | 744017
745922
745810 | NJS REFORMATORY
NJS REFORMATORY
NJ AMER WC ⁴
NJ AMER WC ⁴
TAYLOR, H G | NJSR 4
NJSR 5
DVWC 12-POMON/
RIVERTON 14
TAYLOR 3 | 1951
1964
A 1961
1964
1963 | 75
73
35 | 357- 387
337- 367
157- 196
179- 229 | -5
0
-17
-17
13 | 10/28
10/28
10/27
10/27
10/21 | -8
-1
-16
-20
11 | 10/24
10/25
11/03
11/03
11/03 | -3
-1
1
-3
-2 | | 5-137
5-138
5-140
*5-145
5-147 | 400148
400244
400110 | 745936
745607
745713 | TAYLOR, H G
TAYLOR, H G
'CHANT, HARRY R
HOLY CROSS HS
NJ AMER WC | TAYLOR 2
TAYLOR 1
CHANT 1
HIGH SCHOOL
FAIRVIEW ST | 1963
1963
1965
1958
1970 | 15
425
70 | ³ 25
³ 25
140 - 155
154 - 174
180 - 235 | 11
12
46
1 | 10/21
10/21
10/28
10/27
10/26 | 11
11
4
-3
-2 | 11/03
11/03
11/01
11/01
11/03 | 0
-1
-2
-4
-3 | | *5-150
5-160
5-161
5-180
5-181 | 400315
400318
400532 | 745408
745438
744833 | AMICO SAND
NJ AMER WC
NJ AMER WC ⁴
WORKMAN, JAMES
GRIFFIN PIPE C | AMICO
DVWC 22
DVWC 32
WORKMAN 1
GRIFFIN B | 1957
1963
1971
1951
1964 | 45
40
41 | 27- 37
102- 123
135- 167
170- 194
98- 119 | 5
17
5
9
NM | 10/28
10/26
10/25
12/29
NM | 4
-2
8
-7 | 10/31
11/03
11/03
11/08
11/06 | -1
-13
-7
-1
NA | | 5-182
5-188
5-189
5-190
*5-206 | 400704
400706
400712 | 744838
744930
744842 | GRIFFIN PIPE C FLORENCE TWP WD FLORENCE TWP WD FLORENCE TWP WD CARTY, RONALD | GRIFFIN A
FTWD 3
FTWD 2
FTWD 1
RALPH PARKER | 1964
1948
1931
1931
1959 | 30
15
30 | 92- 113
123- 138
105- 120
99- 119
370- 380 | NM
0
NM
3
-25 | NM
11/04
NM
11/04
11/08 | -7
-3
-14
3
-23 | 11/06
11/04
11/04
11/04
10/28 | NA
-3
NA
0
2 | | *5-214
5-232
*5-261
5-264
5-265 | 395727
395525
395704 | 745915
745025
745812 | WALDER, THOMAS MAPLE SHADE WD USGS MOORESTOWN TWP WD MOORESTOWN TWP WD | 1
MSWD 8
MEDFORD 5 OBS
MTWD 5
MTWD 6 | 1972
1967
1963
1963 | | ³ 319
210- 270
740- 750
248- 288
248- 288 | NM
-35
-58
-50
-47 | NM
11/03
9/30
11/01
11/01 | -13
-33
-61
-48
-47 | 11/02
11/04
11/07
11/03
11/03 | NA
2
-3
2
0 | | *5-266
*5-268
*5-273
5-274
5-276 | 395751
395835
395841 | 745832
745643
745905 | MOORESTOWN TWP WD
MARLAC ELECTRONICS
MOORESTOWN FC
CAMPBELL SOUP
CAMPBELL SOUP | MTWD 3
LAYNE 1
FIELD CLUB 1
CAMPBELL 1
CAMPBELL 2 | 1942
1960
1964
1958
1958 | 70
70
40 | 269- 299
3 288
274- 302
241- 262
232- 263 | -52
-35
-29
-26
NM | 11/01
11/03
12/20
11/01
NM | -52
-39
-32
-29
-30 | 11/03
11/01
11/01
12/06
12/06 | 0
-4
-3
-3
NA | | *5-283
5-284
*5-290
*5-297
*5-304 | 395936
395936
395525 | 745452
744655
745416 | MOORESTOWN TWP WD
MOORESTOWN TWP WD
MOUNT HOLLY WC
RUDDEROW, J E
MOUNT LAUREL MUA | MTWD 8
MTWD 4
MHWC 6
SPRING VALLEY
MLWC 2 | 1969
1959
1973
1954
1965 | 15 | 282- 332
298- 338
545- 615
441- 457
362- 399 | -35
-32
-57
NM
-63 | 11/01
11/01
11/01
NM
11/02 | -34
-31
-63
-71
-64 | 12/19
12/19
12/05
11/01
11/02 | 1
1
-6
NA
-1 | | 65-330
*65-331
*65-332
65-333 | 400034
400106
400129 | 743621
743720
743656 | US ARMY US ARMY US ARMY US ARMY US ARMY US ARMY | FORT DIX 4 FORT DIX 1 FORT DIX 5 FORT DIX 2 MCGUIRE D | 1943
1941
1969
1941
1953 | 138
150 1
131 1 | 1,056-1,086
916- 960
1,064-1,104
1,030-1,051
1,012-1,075 | -51
-38
-42
-48
-66 | 11/01
11/01
11/01
11/01
11/02 | -65
-47
-52
-61
-65 | 11/09
12/29
12/29
11/07
11/19 | - 14
- 9
- 10
- 13
1 | | *5-336
* ⁶ 5-337
*5-340
* ⁶ 5-344
5-382 | 400216
400300
400546 | 743607
743514
743446 | US AIR FORCE US AIR FORCE US AIR FORCE HOFFMAN-LAROCHE SYBRON CHEM | MCGUIRE C
MCGUIRE A
MCGUIRE B
1974 WELL
IONIC CHEM 4 | 1953
1953
1960
1974
1976 | 122
130
136 | ,036-1,089
992-1,055
780- 835
783- 814
773- 824 | NM
-66
-30
-18
-52 | NM
11/02
11/02
11/01
11/03 | -58
-67
-34
-9
-63 | 11/19
11/19
11/19
10/27
11/08 | NA
-1
-4
9
-11 | | *5-385 | 395839 | 744249 | SYBRON CHEM | IONAC CHEM 5 | 1977 | 30 | 747- 823 | -52 | 11/03 | -61 | 11/08 | -9 | Table 10. <u>Water-level data for wells screened in the middle aquifer and undifferentiated part of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988</u>--Continued | Well
number | | n
Longi-
tude | Owner | | | ltitude
f land
urface ¹
(ft) | Screened
interval ²
(ft) | Water le
1983
Alti-
tude ¹ Date
(ft)(mo/day) | 1988
Alti-
tude¹ Dat | | |---|---|--------------------------------------|--|---|--|--|--|---|---|-----------------------------------| | * ⁶ 5- 38
5- 39
*5- 43
*5- 44 | 38 395939
3 400212
6 400118
0 400242 | 743742
745748
744010
744223 | US ARMY
RIVERSIDE INDUS
HELIS, W G
RHODIA CORP
STATE OF NJ | FORT DIX 6
FTC 39
STOCK FARM 1
RHODIA 1 OBS
1-REST AREA | 1970
1952
1928
1964
1972 | | 1,090-1,140
54- 67
757- 800
603- 613
200- 220 | -47 11/01
2 10/28
NM NM
-29 51/06
-5 10/27 | -62 12/
1 10/3
-51 701/
-36 10/2
-10 11/ | 29 -15
31 -1
25 NA
-7 -7 | | *5- 63
*5- 64
5- 65
5- 66
*5- 66 | 9 400122
1 400139
1 400225 | 745308
745325
745402 | MOUNT HOLLY WC
WILLINGBORO MUA
WILLINGBORO MUA
WILLINGBORO MUA
WILLINGBORO MUA | MHWC 5
WMUA 6
WMUA 9(OLD 3)
WMUA 1
WMUA 5 | 1965
1959
1959
1955
1958 | 55
39
28
10
39 | ³ 516
³ 363
203- 304
147- 199
230- 256 | -58 11/03
-16 10/27
-19 10/27
-16 10/27
-16 10/27 | -60 12/
-26 11/
-29 11/0
-22 11/0
-17 11/0 | 02 -10
02 -10
02 -6 | | 5- 66
* ⁶ 5- 68
5- 73
5- 74
5- 75 | 33 395122
2 400327
9 395508 | 743017
744934
745539 | WILLINGBORO
MUA
USGS
BURLINGTON T WD
RAMBLEWOOD CC
RAMBLEWOOD CC | WMUA DCB 28 BUTLER PL 1 C 4 3 TEE 2 TEE | 1955
08S 1964
1979
1972 | 6 141 :
80
75
20 | 222- 242
2,102-2,117
315- 366
3425
3325 | -9 10/27
-34 10/19
NM NM
-69 11/02
-64 11/02 | -11 11/0
-42 10/
-14 10/3
-75 10/
-69 10/ | 21 -8
31 NA
31 -6 | | 5- 78
5- 80
5- 80
5- 80
5- 81 | 1 400020
5 400100
7 400110 | 750114
750035
745947 | RIVERSIDE TWP
TEXACO CORP
CINNAMINSON TSA
HOEGANAES IRON
HOEGANAES IRON | SEWERAGE 1
OW 10
1
L1
L6 | 1954
1980
1983
1982
1982 | 10
20
411
412
8 | 35- 47
5- 25
844
5- 25
3- 23 | NM NM
0 10/26
2 10/21
4 10/24
5 10/24 | 0 11/0
-1 10/3
-1 10/3
3 10/
4 10/ | 31 -1
31 -3
31 -1 | | 5- 81
*5-109
7- 3
7- 4
*7- 4 | 1 400151
9 395457
6 395512 | 745432
750640
750640 | HOEGANAES IRON
WILLINGBORO MUA
CAMDEN CITY WD
CAMDEN CITY WD
CAMDEN CITY WD | I2
WMUA 11
CITY 7N
CITY 11
CITY 6N | 1982
1988
1966
1942
1948 | 18
28
21
13
14 | 5- 25
197- 243
123- 163
124- 154
111- 135 | 8 10/24
NM NM
NM NM
-27 11/21
-26 11/23 | 10 10/
-16 11/0
-28 11/0
8 11/0
-20 11/0 | 02 NA
04 NA
15 35 | | 7· 6
*7· 12
7· 13
7· 13
*7· 13 | 4 395252
2 395353
4 395353 | 745943
745708
745708 | CAMDEN CITY WD
NJ AMER WC
NJ AMER WC
NJ AMER WC
NJ AMER WC | CITY 4
BROWNING 45
OLD ORCHARD C
OLD ORCHARD 3
OLD ORCHARD 3 | 7 1968 | 41
77
71
68
72 | 131 - 156
483 - 626
3500
454 - 488
443 - 493 | -33 11/21
-84 11/10
-81 11/16
NM NM | -29 11/0
-92 11/0
-81 11/
-73 11/0
-73 11/0 | 04 -8
03 0
08 NA | | *7- 14
*7- 14
7- 14
*7- 18
*7- 28 | 6 395455
7 395455
6 394950 | 745924
745929
745855 | NJ AMER WC
NJ AMER WC
NJ AMER WC
NJ AMER WC
NJ AMER WC | ELLISBURG 23
KINGSTON 27
KINGSTON 25
GIBBSBORO OB
EGGBERT 35 | 1960
1963
1961
3 1969
1967 | 32
40
44
70
22 | 321- 378
366- 417
309- 367
3680
3484 | NM NM
-70 11/10
-68 11/10
-84 11/10
NM NM | -66 11/0
-70 11/0
-67 11/0
-88 11/
-74 11/ | 08 0
08 1
02 -4 | | *7- 30
*7- 31
*7- 32
7- 33
*7- 41 | 5 395134
9 395628
8 395737 | 750229
750406
750626 | HADDONFIELD WD
NJ AMER WC
MCHVIL PNSK WCM
USGS
NJ AMER WC | LAKE ST WELL
MAGNOLIA 16
BROWNING 2A
PETTY I EAST
ELM TREE 3 OB | | 50
78
16
5
4149 | 307- 372
428- 510
110- 140
355
706- 717 | NM NM
-89 11/16
-31 11/03
-19 11/03
-78 11/09 | -72 11/
-87 11/0
-34 11/0
-19 11/
-82 11/ | 07 2
09 -3
08 0 | | * ⁶ 7- 4;
*7- 53
*7- 56
* ⁶ 11- 1;
*15- 2 | 34 395553
34 395712
37 39251 | 750612
745217 | GST RACE TK | NEW BKLYN 1 (2
HARRISON 4
RAGOVN 2100 (
DTMUA 4 | 1980 | 40
15 | 1,485-1,495
15- 35
2,083-2,093
282- 345 | -53 11/08
-48 11/14
-12 12/02
-43 11/09
-50 11/03 | -57 11/
-49 11/
-12 11/9
-49 12/
-46 11/ | 18 -1
04 0
02 -6 | | 15- 7
15- 8
15- 9 | 76 394939
34 394948
36 394959 | 751704
751639
751650 | GREENWICH TWP WD
HERCULES CHEM
HERCULES CHEM
HERCULES CHEM
HERCULES CHEM | GTWD 3(NEW 4)
4 1970
GIBBSTOWN 2
GIBBSTOWN OB
GIBBSTOWN TH | 1970
1954
2 1953 | 10
15
12
4
14
46 | 108- 168
90- 120
121- 146
129- 134
102- 107 | -9 11/15
0 11/15
NM NM
1-2 11/15
-1 11/15 | -10 11/0
-1 11/0
-9 11/0
-3 11/
-1 11/ | 01 -1
01 NA
/01 -1 | | 15- 13
*15- 13
*15- 13
*15- 14 | 55 394516
57 394535
50 394608 | 752241
752054
752135 | PURELAND WC
SHELL OIL C
PURELAND WC
PURELAND WC
PURELAND WC | TEST WELL 1 OBS WELL 8A PURE 2(3-1973 TEST WELL 4 LANDTECT TW-6 | 1970 | 20
47
429
46
419 | 317- 367
130- 180
158- 208
132- 184
102- 152 | NM NM
-1 11/16
4-6 11/16
4-1 11/16
2 11/16 | -2 11/0
-2 11/
-8 11/0
-2 11/
1 11/ | 07 -1
)9 -2
′09 -1 | | 15- 14
15- 14
15- 15
15- 15
15- 16 | 6 394648
8 394733
9 394736 | 3 752318
3 752351
3 752344 | PURELAND WC
PURELAND WC
MONSANTO CHEM
MONSANTO CHEM
MONSANTO CHEM | 1-1973
LANDTECT TW-9
BRIDGEPORT W2
BRIDGEPORT E1
OB1(TW5-OBC) | 1961 | 48
45
12
11
48 | 81- 136
82- 101
57- 82
56- 81
70- 90 | -2 11/17
-2 11/16
NM NM
NM NM
-6 11/15 | -3 11/
-3 11/
-14 11/
-17 11/
-4 11/ | 08 -1
08 NA
08 NA | | 15- 16
15- 16
15- 16
15- 17
15- 21 | 66 394755
67 394726
10 394854 | 752108
752319
751906 | MONSANTO CHEM PENNS GROVE WSC MONSANTO CHEM VINE CONCRETE C PAULSBORO WD | OB3(TW1-OBA)
BRIDGEPORT 2
MONSANTO 1
REPAUP 1
PWD 4 | 1961
1955
1969
1970
1951 | ⁴ 10
5
10
11
25 | 95- 100
65- 85
64- 94
85- 106
192- 220 | -9 11/15
1 11/17
NM NM
NM NM
-12 11/02 | -8 11/
2 11/0
-12 11/0
4 11/1
-12 11/0 | 01 1
08 NA
16 NA | Table 10. Water-level data for wells screened in the middle aguifer and undifferentiated part of the Potomac-Raritan-Magothy aguifer system, 1983 and 1988--Continued | | | | | | | | | | Water le | | | |-------------------------------------|---------------------------------|--------------------------------------|--|---|---|--------------------------------------|---|---|---|---|---| | Wel:
num! | | Location Lati- | on
Longi-
tude | Owner | | | | Screened
interval ²
(ft) | 1983
Alti-
tude ¹ Date
(ft)(mo/day) | Alti-
tude ¹ Date | Change in
ater level
(1983-88
(ft) | | *15-
15-
15-
*15-
*15- | 213
236
238
242
279 | 394947
394434
394438
394512 | 751416
751843
751833
751830 | PAULSBORO WD
SWEDESBORO B WD
SWEDESBORO B WD
DEL MONTE CORP
HUNTSMAN POLYP C | PWD 5
SBWD 3
SBWD 2
6
SHELL OBS 7 | 1957
1969
1940
1944
1962 | 10
75
30
25
17 | 135 - 175
241 - 312
217 - 240
267 - 298
315 - 320 | -10 11/02
-20 11/08
-21 11/08
-21 11/18
-24 11/04 | -10 11/07
-22 11/10
-24 11/10
-21 11/01
-26 11/10 | 0
-2
-3
0
-2 | | 15-
*15-
15-
15-
*15- | 347
348
354
359
374 | 394910
394716
395015 | 751541
752112
751727 | GREENWICH TWP WD
GREENWICH TWP WD
ROLLINS ENV SERV
E I DUPONT
DEPTFORD TWP MUA | GTWD 5 (2-A)
GTWD 6
DP 2
C POWER 22
DTMUA 6 | 1977
1978
1975

1979 | 20
20
4 13
5
50 | 82- 117
105- 135
81- 91
3 103
430- 486 | -2 11/15
-10 11/16
7 11/17
2 11/15
-65 11/03 | -2 11/01
-11 11/01
6 11/02
0 11/02
-63 11/10 | 0
-1
-1
-2
2 | | 15-
15-
15-
*15-
15- | 380
387
395
415
435 | 394713
394801
394834 | 752121
751759
751044 | MONSANTO CHEM
ROLLINS ENV SERV
REPAUPO FIRE C
W DEPTFORD TWP WD
W DEPTFORD TWP WD | OBS 2
DP 1
30-1972
TEST 8-79
WDTWD 8 | 1961
1975
1979
1979
1981 | ⁴ 18
⁴ 10
⁴ 20
40
40 | 71- 76
80- 90
93- 113
287- 307
252- 312 | -9 11/15
6 11/17
4-5 11/18
-42 11/03
-43 11/03 | -9 11/08
9 11/01
-14 11/01
-39 11/14
-38 11/14 | 0
3
-9
3
5 | | 15-
15-
15-
15-
15- | 490
492
494
540
549 | 394716
394716
394800 | 752103
752103
751936 | ROLLINS ENV SERV
ROLLINS ENV SERV
ROLLINS ENV SERV
US EPA
CHEM LEAMAN | MA-31
MA-3D
MA-3S
EPA 108
DW1 | 1981
1981
1981
1982
1981 | 43
43
43
7 | 30- 40
45- 60
5- 10
87- 97
95- 97 | 40 11/17
43 11/17
41 11/17
NM NM
5 11/16 | -1 11/02
-1 11/02
-1 11/02
2 11/15
4 11/01 | -1
-4
-2
NA
-1 | | 15-
15-
15-
15-
15- | 550
555
556
561
562 | 394808
394808
394800 | 751914
751914
751913 | CHEM LEAMAN US EPA REGION II US EPA REGION II US EPA REGION II US EPA REGION II | DW2
S-2B
S-2C
S-11B
S-11C | 1981
1983
1983
1983
1983 | 410
411
411
11 | 100 - 102
40 - 50
98 - 108
79 - 89
105 - 115 | 3 11/16
2 11/16
1 11/16
6 11/16
NM NM | 2 11/23
3 11/21
1 11/21
6 11/21
5 11/21 | -1
1
0
0
NA | | 15-
*15-
15-
*15-
15- | 569
585
586
616
620 | 394704
394720
394637 | 752058 | PURELAND WC
ROLLINS ENV SERV
ROLLINS ENV SERV
USGS
USGS | PWC 3
DP5
DP4
SHIVELER MIDD
GAVENTA MID 1 | | 32
8
12
31
7 | 161 - 201
79 - 89
95 - 125
230 - 240
131 - 141 | NM | -12 11/09
-1 11/02
2 11/02
-8 11/14
2 11/14 | NA
NA
NA
NA | | 15-
*15-
15-
15-
15- | 679
681
682
685
689 | 395038
395048
395046 | 751605
751518
751446 | MOBIL OIL C
MOBIL OIL CO
MOBIL OIL C
EXXON CORP
E I DUPONT | W-5D
MW-7D
W-8D
MW 7
DUPONT 93 | 1985
1985
1985
1984
1985 | 10
9
11
30
10 | 118- 128
60- 70
105- 115
8- 28
7- 17 | NM NM
NM NM
NM NM
NM NM | -3 11/03
1 11/03
-3 11/03
6 11/08
2 11/02 | NA
NA
NA
NA | | 15-
*15-
15-
15-
15- | 697
713
727
771
774 |
394808
394808
395202 | 752108
751724
751724
751115
751118 | USGS
USGS | BRDGEPRT BKUP
STEFKA-2 OBS
STEFKA-3 OBS
NAT PK 2-PW-M
NAT PK 4-OW-A | 1986
1987
1987 | 8
6
5
10
10 | 69 · 84
125 · 155
206 · 216
92 · 123
93 · 113 | NM NM NM NM NM NM NM NM | 4 11/01
-8 11/15
-8 11/15
-6 11/15
-1 11/15 | NA
NA
NA
NA
NA | | *15-
15-
15-
21-
21- | 776
780
1039
12
22 | 395223
394958
401536 | 742920 | USGS
USGS
MOBIL OIL C
EAST WINDSOR MUA
EAST WINDSOR MUA | NAT PK 7-OW-C
NAT PK 10-OW-
MOBIL 48 DWTA
6 TWIN RIVERS
EWMUA 3 | BM 1987
1988 | 15
5
7
115
100 | 125 - 135
75 - 85
100 - 153
520 - 560
337 - 367 | NM NM
NM NM
NM NM
27 10/21
42 10/19 | -4 11/15
-2 11/15
-11 11/03
23 10/18
32 10/18 | NA
NA
NA
-4
-10 | | *21-
*21-
21-
*21-
*21- | 25
26
27
39
43 | 401725
401730
401048 | 743159
743202
744036 | CARTER WALLACE EAST WINDSOR MUA EAST WINDSOR MUA KALEX CHEM PROD BORDENTOWN WD | KENTILE 1
EWMUA 2
EWMUA 1
1 (KEYE TEX)
WHITE HORSE 2 | 1954
1964
1964
1964
1965 | 100
100
98
55
10 | 206- 215
260- 290
279- 295
179- 199
118- 138 | 64 10/20
72 10/19
70 10/19
14 11/07
6 10/28 | 67 10/23
65 10/18
65 10/18
14 12/22
8 10/30 | .7
-5
0
2 | | *21-
21-
21-
*21-
*21- | 54
62
73
80
89 | 401353
401419
401558 | | GST WC | ROBRT FROST 1
PARK AVENUE 1
PAXSON AVE 9
COCA-COLA 197
1972 WELL | 1 1969
1958 | 85
100
80
125
70 | 194 - 243
162 - 207
128 - 144
150 - 180
23 - 33 | NM NM
40 10/07
NM NM
NM NM | 38 10/12
39 10/12
42 10/12
53 10/24
64 10/31 | NA
-1
NA
NA
NA | | 21-
*21-
21-
21-
21- | 92
101
106
120
127 | 401238
401349
401555 | 743448
743552
743704 | CHAMPALE PRINCETON MEM PARK PATER MOTORS ELIZABETHTOWN WD REED SOD FARM | YARD WELL
MEMORIAL PK 1
1-1949
JEFFERSON PK
1953-HOLMAN | 1949 | 27
135
110
80
100 | 70- 80
366- 421
220- 230
96- 121
18- 68 | 2 11/01
36 10/20
NM NM
75 10/27
NM NM | 3 10/24
35 10/25
106 10/28
63 10/24
80 10/26 | 1
-1
NA
-12
NA | | 21-
23-
*23-
23-
*23- | 145
9
11
13
16 | 401800
401818
401841 | 743206
742932
743355 | CARTER WALLACE
DANSER, FRANK
CARTER WALLACE
STULTZ, STANLEY
CRANBURY TWP WD | EAST WINDSOR
IRR-1950
4 CW 1
1-1954(CLIFRD
CTWD 1A | 1950
1956 | 100
100
115
100
95 | 205 - 226
250 - 280
255 - 285
133 - 163
230 - 260 | 64 10/20
67 10/19
48 10/25
72 10/24
61 10/25 | 66 10/23
64 10/24
53 10/23
70 10/21
58 10/26 | 2
-3
5
-2
-3 | Table 10. Water-level data for wells screened in the middle aguifer and undifferentiated part of the Potomac-Raritan-Magothy aguifer system, 1983 and 1988--Continued | | | | | | | ltitude | | Water le | 1988 | Change in | |---|----------------------------|----------------------------|--|--|--|---|---|---|---|----------------------------------| | Well
number | Locati
Lati-
tude | on
Longi
tude | Owner | | Year s
drilled | of land
surface ¹
(ft) | Screened
interval ²
(ft) | Alti-
tude ¹ Date
(ft)(mo/day) | Alti-
tude ¹ Date
(ft)(mo/day) | water level
(1983-88)
(ft) | | 23- 17
23- 28
23- 33
*23- 39
23- 45 | 401924
401923
402410 | 742909
743247
742531 | CRANBURY TWP WD
CARTER WALLACE
DYAL, LEROY
KONUK, JOSEPH
POLYSAR RUB SERV | CTWD 3
CW 5
DYAL 1 (1951)
KONUK 1
RETURN WELL | 1963
1964
1951
1956
1969 | 98
105
90
140
110 | 268- 298
298- 335
170- 180
225- 245
203- 233 | 61 10/25
55 10/30
67 10/24
NM NM | 60 10/26
59 10/23
66 10/26
-3 10/21
-7 10/20 | -1
-1
NA
NA | | *23 - 50
*23 - 57
23 - 58
23 - 63
23 - 64 | 402441
402448 | 742448
742700
742440 | ANHEUSER BUSCH
E BRUNSWICK TWP WD
MIDDLESEX WC
E BRUNSWICK TWP WD
USGS | BUSCH 5
COLONIAL OAKS
TAMARACK 1-75
EBTWD 1
BEECHER OBS | | 37
122
108
110
85 | 215 - 265
216 - 241
87 - 107
162 - 182
35 - 40 | -39 10/27
-21 09/30
27 10/21
-13 09/30
64 10/17 | -50 10/24
-20 10/18
32 10/18
-11 10/18
66 10/18 | -11
1
5
2
2 | | *23 · 70
23 · 72
23 · 94
*23 · 97
*23 · 114 | 402635
402239
402247 | 742402
742530
742503 | FISCHER, ROBERT
SMITH, LAWRENCE
HELMETTA WC
DUHERNAL WC
DUHERNAL WC | FISCHER OBS
SMITH 2-1972
5-1962 (OLD#2
DUHRNL OBS 49
DUHRNL OBS 52 | F 1946 | 73
80
60
39
26 | 0- 21
120- 130
183- 193
236- 301
225- 237 | 56 10/17
-14 10/17
27 10/18
2 10/18
-30 11/01 | 56 10/17
-13 10/17
20 10/20
6 12/07
-30 10/17 | -7
-4 | | 23-127
*23-132
*23-147
23-171
23-176 | 402335
402350
402404 | 742136
741840
742204 | DUHERNAL WC
DUHERNAL WC
OLD BRIDGE MUA
DUHERNAL WC
OLD BRIDGE MUA | DUHERNAL AF
DUHRNL OBS 56
BROWNTOWN 4
DUHERNAL BF
OBS 1-1972 | 1945
F 1947
1966
1946
1972 | 12
25
80
20
45 | 236- 296
262- 267
425- 475
240- 300
321- 363 | -33 10/31
-38 11/01
-79 10/17
-44 11/01
-53 10/17 | -29 10/24
-36 10/18
-65 10/19
-44 10/18
-66 10/19 | 2
14
0 | | *23-179
*23-194
23-197
23-201
*23-206 | 402536
402543
402614 | 742018
742010
741744 | OLD BRIDGE MUA
PERTH AMBOY WD
PERTH AMBOY WD
OLD BRIDGE MUA
OLD BRIDGE MUA | OBS 2-1972
RUNYON 1 OBS
PERTH AMBOY 2
MIDTOWN 1
LAWRENCE HAR | 1956 | 10
18
20
15
60 | 250- 292
201- 281
205- 260
266- 306
360- 395 | -50 10/17
-46 10/20
-47 10/20
NM NM
-78 10/19 | -62 10/19
-59 10/19
-64 10/17
-63 10/20
-86 10/19 | | | 23-226
*23-229
23-232
*23-240
23-257 | 402015
402023
402051 | 742757
742858
742746 | GENERAL FOODS
MONROE TWP MUA
MONROE TWP MUA
MONROE TWP MUA
ALL STAR DAIRY | PORSGATE 4 OB
FORSGATE 11
12-1961
ALL STAR 1 | 1967
s 1961
1961
1961
1932 | 132
147
130
140
61 | 330 - 364
319 - 330
272 - 314
305 - 353
3158 | 53 10/21
51 10/20
61 10/21
46 10/20
-29 11/10 | 60 10/21
48 10/17
59 10/20
40 10/20
-31 10/19 | -3
-2
-6 | | 23-262
23-263
23-264
23-265
23-266 | 403200
403200
403211 | 741620
741620
741612 | CHEVRON OIL C
CHEVRON OIL C
CHEVRON OIL C
CHEVRON OIL C
CHEVRON OIL C | OBS 1
CHEVRON 2
OBS 2
11
CHEVRON 3 | 1951
1950
1950

1951 | 30
45
45
14
40 | 72- 82
96- 106
96- 106
11- 94
87- 96 | 15 10/17
6 10/17
8 10/17
11 10/17
15 10/17 | 17 10/18
9 10/18
9 10/18
11 10/18
17 10/18 | 3
1
0 | | 23-270
23-289
23-291
23-295
23-298 | 402056
402109
402125 | 742937
743013
742920 | AMER CYANAMID CORP
MONROE TWP MUA
MONROE TWP MUA
INT PERMALITE
STAUFFER CHEM | TEST 2
15(KIMBRY-CLK
FORSGATE 1 OB
LAKES CARBON
STAUFFER PW 1 | \$ 1961
1 1966 | 12
134
107
120
4 123 | 53- 57
227- 257
192- 203
187- 233
217- 237 | 9 10/17
66 10/25
65 10/27
68 10/21
471 10/21 | 9 10/18
73 10/20
64 10/20
68 10/21
74 10/21 | | | 23-302
23-306
23-315
23-316
23-319 | 402147
402204
402206 | 742847
743024
743515 | SOUTH BRUNSWICK MUA
PHELPS DODGE C
SOUTH BRUNSWICK MUA
AEROCHEM CORP
SOUTH BRUNSWICK MUA | FORSGATE 14 PHELPS DODGE 1 13 AEROCHEM 2 SBMUA 12 | 1955
3 1968
1971
1961
1963 | 115
120
102
120
93 | 170 - 200
201 - 207
103 - 138
3 100
110 - 135 | 76 10/21
69 10/21
76 10/24
86 10/25
72 10/24 | 76 10/17
69 10/21
73 10/17
85 10/24
75 10/17 | 0
-3 | | 23-322
*23-329
23-348
23-350
23-353 | 402315
402605
402608 | 742652
741957
741955 | SOUTH BRUNSWICK MUA
DEY BROTHERS
SAYREVILLE WD
SAYREVILLE WD
SAYREVILLE WD | SBMUA 11
2
OBS WELL 101
OBS WELL 102
OBS WELL 103 | 1963
1955
1968
1968
1968 | 122
115
30
30
35 | 95- 115
215- 248
269- 279
267- 277
262- 273 | 77 10/24
34 10/17
-47 10/19
-51 10/19
-47 10/19 | 74 12/20
33 10/17
-59 10/18
-62 10/18
-59 10/18 | -3
-1
-12
-11
-12 | | 23-365
23-370
23-371
23-376
23-380 | 402631
402638
402649 | 742053
742022
742025 | DUHERNAL WC HERCULES POWDER HERCULES POWDER HERCULES POWDER HERCULES POWDER | DUH SAY 4 OBS
HERCULES 6
HERCULES 5
HERCULES 3
HERCULES 2 | 1931
1946
1929
1928
1927 | 6
20
48
41
48 | 148- 160
164- 194
182- 228
180- 220
184- 237 | -43 10/17
-39 10/24
NM NM
-43 10/24
-42 10/18 | -51 10/17
-48 10/21
-50 10/21
-52 10/21
-37 12/14 | -8
-9
NA
-9
5 | | 23-384
23-401
23-404
*23-411
23-423 | 402744
402745
402822 | 741628
741645
741630 | HERCULES POWDER
SAYREVILLE WD
SAYREVILLE WD
SOUTH AMBOY WD
NL INDUSTRIES | HERCULES 1REB
MORGAN P
MORGAN OBS 1
SAWD 8
CL TEST 1 | T
1939
1967
1966
1947
1956 | 54
44
23
10
30 | 170 - 225
254 - 288
238 - 248
209 - 234
75 - 84 | -35 10/24
-80 10/18
-78 10/19
-69 10/18
-46 10/18 | -43 10/21
-77 10/18
-78 10/18
-69 10/18
-47 10/18 | -8
3
0
0
-1 | | 23-429
23-430
*23-438
23-439
23-441 | 402923
402559
402633 | 741651
742142
742200 | JERSEY CENTRAL PL
JERSEY CENTRAL PL
SOUTH RIVER WD
SOUTH RIVER WD
HERBERT SAND C | WERNER STA 6
7-1972
SRWD 5
SRWD 2 OBS
HSC 3 | 1969
1972
1977
1967
1964 | 18
12
20
21
6 | 154- 177
135- 165
132- 182
121- 126
49- 52 | -39 10/18
-41 10/18
-38 10/17
-32 10/17
1 10/18 | -40 10/18
-42 10/18
-46 10/21
-38 10/21
1 10/27 | -1
-1
-8
-6 | Table 10. Water-level data for wells screened in the middle aguifer and undifferentiated part of the Potomac-Raritan-Magothy aguifer system, 1983 and 1988--Continued | | | | | | | | | | er lev | | | | |--|----------------------------|----------------------------|---|--|---------------------------------|---------------------------------|---|---|--|--|--|-------------------------------------| | Well
number | Locati
Lati-
tude | on
Longi-
tude | Owner | | Year
drille | | Screened
interval ²
(ft) | 1983
Alti-
tude ¹
(ft)(mo | | 1988
Alti-
tude ¹
(ft)(m | wat
Date (| nange i
er lev
1983-8
(ft) | | 23 - 445
23 - 449
23 - 452
23 - 456
23 - 462 | 402352
402401
402404 | 742250
742243
742235 | SPOTSWOOD WD
DUHERNAL WC
SCHWEITZER, P J
SCHWEITZER, P J
UNION CARBIDE | TW 4F-76
DUHERNAL 17
8
1R
CARBIDE 1 | 197
194
195
196 | 20
7 25
6 21 | 195- 264
3 60
226- 276
235- 275
47- 57 | -51 1
-49 1 | 0/27
NM
10/27
10/27
10/18 | -27
2
-69
-66
12 | 10/19
12/07
10/18
10/18
10/17 | -6
NA
-18
-17
-1 | | *23- 482
23- 492
*23- 503
23- 504
*23- 506 | 402129
401938
402047 | 742823
742404
742820 | AMER CYANAMID CORP
BASF-WYANDOTTE
EONAITIS, PETER
FORSGATE
SMITH, LAWRENCE | TEST 1 OBS
BASF 3
EONAITIS 1
I-IRR
3-1958 | 197
196
197
195 | 78 130
54 140
72 141 | 44- 76
230- 276
410- 440
288- 340
213- 223 | 61 1
12
57 1 | 10/17
10/21
10/25
10/20
1M | 10
54
13
43
9 | 10/18
10/21
10/19
10/26
10/17 | 1
-7
1
-14
NA | | 23- 510
23- 511
23- 512
23- 514
23- 543 | 402232
402531
402755 | 743114
742822
742258 | IBM CORP
IBM CORP
ERDMAN, W
HERBERT SAND C
SHELL OIL CORP | GW 20
GW-18A
ERDMAN 1
NEW 2-76
SHELL 5(S2) | 197
4 19

197 | 79 118
85
76 5 | 30- 65
65- 95

25- 35
42 | 80
NM 1
2 | 10/17
10/17
NM
10/18
NM | 78
77
62
2
5 | 12/15
10/21
10/20
10/27
10/19 | -4
-3
NA
O
NA | | 23 - 548
23 - 552
23 - 566
23 - 568
23 - 577 | 402018
402129
402410 | 743021
742901
742231 | SHELL OIL CORP
SOUTH BRUNSWICK MUA
STAUFFER CHEM
SCHWEITZER, P J
CHEVRON OIL CORP | SHELL 8(R7)
SBMUA 15
D-2
12
SB-13A | 197
198
198
198 | 79 105
32 124
33 25 | 336
116- 166
122- 225
210- 280
37- 57 | NM 1
NM 1
-44 | NM
NM
NM
10/27
NM | 5
59
68
-62
-3 | 10/19
10/17
10/21
10/18
10/18 | NA
NA
NA
-18
NA | | 23 - 578
23 - 585
23 - 782
23 - 1158
*23 - 1160 | 402450
402353
402350 | 742330
742056
742051 | CHEVRON OIL CORP
CHIRLIAN, PAUL
OLD BRIDGE MUA
OLD BRIDGE MUA
E I DUPONT | E15A
DEEPWELL
OLD BRIDGE 12
OLD BRIDGE R6
FW-2 | | 30 120
34 30
38 30 | 44- 64
238- 248
230- 337
255- 350
210- 230 | NM I
NM I | M
M
M
M
M
M
M | -4
-32
-60
-55
-54 | 10/18
10/17
10/19
10/19
10/25 | NA
NA
NA
NA
NA | | 23-1161
*25- 55
*25- 153
*25- 166
*25- 230 | 401744
402444
400952 | 742135
741010
741405 | E I DUPONT
ENGLISHTOWN B WD
SHORELANDS WC
HOWELL TWP MUA
GORDONS CORNER WC | FW-4
ENGLISHTOWN 1
W KEANSBURG 4
ALDRICH W CO
GORDONS 5 | 197 | 53 70
70 65
54 114 | 214- 229
651- 671
635- 690
336- 396
580- 670 | -22
-70
NM I | NM
10/19
10/17
NM
10/19 | -53
-24
-116
-40
-49 | 10/25
10/26
10/19
10/25
10/21 | NA
- 2
- 46
NA
- 13 | | *25 - 247
25 - 249
*25 - 268
25 - 269
*25 - 272 | 401859
402117
402122 | 741809
741511
741511 | GORDONS CORNER WC
GORDONS CORNER WC
MARLBORO TWP MUA
MARLBORO TWP MUA
MARLBORO TWP MUA | GORDONS 2
GORDONS 4
2-PROD
1-PROD
MARLBORO 1 OB | 196
196
197
197
197 | 58 143
72 114
72 111 | 762- 832
741- 810
632- 698
647- 716
670- 680 | NM 1
-50
-55 | 10/19
NM
10/20
10/20
10/20 | -48
-49
-64
-68
-73 | 10/20
10/20
10/26
10/26
10/17 | - 14
NA
- 14
- 13
- 18 | | *25- 297
25- 318
*25- 320
25- 452
*25- 453 | 402700
402705
401857 | 735958
735959
741811 | ABERDEEN TWP WD
NATIONAL PARK SERV
NATIONAL PARK SERV
GORDONS CORNER WC
UNION BEACH WD | MATAWAN TWP 1
FT HANCOCK 2
FT HANCOCK 5A
GORDONS 10
UBWD 3 1977 | 190 | 06 8
70 14
30 135 | 447- 487
600- 724
838- 878
740- 800
480- 532 | -7
-8
-39 | 10/20
10/24
10/24
10/19
10/18 | -98
-14
-10
-56
-107 | 10/19
7 01/05
10/19
10/20
10/18 | -20
-7
-2
-17
-16 | | 25- 466
25- 467
*25- 495
*25- 509
*25- 635 | 401850 | 740301 | ABERDEEN TWP WD
SHORELANDS WC T
DEPT OF ENERGY
ROOSEVELT WD
USGS | 3-77
W KEANS 5
DGE TC-40
ROOSEVELT 4
HOWEL TWP 1 0 | 197
19

DBS 198 | 78 ⁴ 77
10
170 | 420- 470
650- 700
31,000
390- 430
1,226-1,330 | 4 - 75
NM
29 | 10/20
10/27
NM
10/31
NM | -86
-115
-11
27
-38 | 10/19
10/19
10/26
10/27
10/20 | -6
-40
NA
-2
NA | | *25- 711
*629- 19
29- 45
29- 46
*629- 47 | 394829
400431
400432 | 740535
740832
740833 | GORDONS CORNER WC
USGS
BRICK TWP MUA
BRICK TWP MUA
BRICK TWP MUA | GORDONS 12
IS BEACH 3 OF
FORG POND 9-7
FP 10
OBS 1 | | 62 9 7
73 8 1
75 20 1 | 649- 756
2,736-2,756
1,441-1,779
1,607-1,827
1,709-1,749 | -6
NM
NM | NM
10/02
NM
NM
11/03 | - /!! | 10/20
10/28
701/12
701/12
701/12 | NA
-5
NA
NA
-24 | | *629- 85
*629- 118
*629- 132
629- 135
*629- 440 | 400200
400319
400333 | 742110
741957
741942 | CIBA-GEIGY CORP
LAKEHURST N A S
JACKSON TWP MUA
JACKSON TWP MUA ⁴
NJ AMER WC | TRCHEM 84 OBS
LAKE NAS 32
SCM 3
SCM 4
LAKEWOOD 10 | 19
19 | 964 96
62 95
962 95 | 1,460-1,480
1,397-1,583
1,606-1,728
1,345-1,555
1,357-1,602 | -28
-37
-25 | 10/26
11/04
10/26
10/26
10/27 | -40
-42
-51
-47
-44 | 10/31
10/26
10/24
10/24
10/24 | -11
-14
-14
-22
-13 | | *629- 490
629- 575
*629- 576
*29- 581
*629- 588 | 400659
400653
400821 | 741707
741717
742630 | AM SMELTING & RF
JACKSON TWP MUA
JACKSON TWP MUA
JACKSON TWP MUA
LAKEWOOD TWP MUA | ⁴ 2
JACKSON 9
JACKSON 8
⁴ JACKSON TWP
S LAKEWOOD 7 | 19
19
10 19 | 78 134
77 135
84 130 | 1,436-1,636
1,276-1,430
1,276-1,462
876- 976
1,410-1,620 | - 29
- 35
- 16 | ⁵ 03/08
10/26
10/26
10/28
10/25 | -44
-42
-48
-26
-56 | 10/20
10/24
10/24
10/25
10/25 | -15
-13
-13
-10
-29 | | * ⁶ 29- 626
29- 779
*33- 64
33- 65
33- 66 | 400433
393912
393912 | 740831
752436
752436 | TOMS RIVER WC BRICK TWP MUA E I DUPONT E I DUPONT E I DUPONT | TRWC 30
BTMUA 12
COURSE LAND 3
COURSE LAND 3
COURSE LAND 3 | B 196 | 32 34 1
66 30
66 30 | 1,700-1,875
1,700-1,860
568- 578
501- 512
375- 386 | -23
NM
-15
-15
-14 | 10/25
NM
11/16
11/16
11/16 | - 18 | 11/04
01/12 ⁷
11/22
11/22
11/22 | -11
NA
-3
-3
-4 | Table 10. <u>Water-level data for wells screened in the middle aquifer and undifferentiated part of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988</u>--Continued | Well
number | Locati
Lati-
tude | on
Longi
tude | -
Owner | | Year
drilled | | Screened interval 2 (ft) | Alti
tud | Water le
83
e ¹ Date
(mo/day) | 1988
Alti-
tude ¹ | w
Date | Change in
ater level
(1983-88)
(ft) | |---|------------------------------|----------------------------|---|---|--------------------------------------|---------------------------------|--|----------------------------------|---|--------------------------------------|---
--| | 33- 67
*33- 69
33- 70
33- 72
33- 80 | 394139
4394141
4394154 | 752349
752343
752351 | E I DUPONT NJ TURNPIKE AUTH NJ TURNPIKE AUTH NJ TURNPIKE AUTH AIR REDUCTION | COURSE LAND P1
SERVICE IN-1
SERVICE 1N-2
SERVICE 1S-1
AIRCO 1 | 1966
1953

1953
1963 | 10
40
40
35
4
15 | 445 - 591
313 - 333
3330
342 - 368
112 - 132 | -17
-19
-21
-25
NM | 11/16
10/26
10/26
10/26
NM | -21
-20
-22
-27
-3 | 11/22
12/01
12/01
12/01
11/08 | -4
-1
-1
-2
NA | | 33 - 82
33 - 84
33 - 85
33 - 103
*33 - 106 | 394549
394556
394346 | 752523
752530
752828 | BRIDGE, BRUCE H B F GOODRICH CORP B F GOODRICH CORP PENNS GROVE SA LINSKI, ALEX | BRIDGE
TEST 8
6 (PW-2)
SEWERAGE AUTH1
1 | 1957
1967
1967
1955
1962 | 4 6
11
10
8
5 | ³ 205
97- 117
109- 129
50- 60
359- 365 | 4-20
-5
-10
-1
NM | 11/17
11/18
11/18
11/15
NM | -19
-6
-14
0
-30 | 11/07
11/17
11/17
11/17
11/22
⁷ 01/05 | 1
-1
-4
1
NA | | *33-107
*33-119
33-122
33-125
33-127 | 394009
394045
394051 | 753043
753018
753030 | NJ DEPT CONSERV PENNSVILLE TWD ATLANTIC CITY ELEC ATLANTIC CITY ELEC ATLANTIC CITY ELEC | FT MOTT SP 1
PTWD 2
DEEPWATER 3R
DEEPWATER 5
DEEPWATER 6 | 1900
1949
1970
1953
1958 | 8
7
10
10
10 | 300- 320
210- 230
165- 235
149- 219
158- 188 | -21
-39
-52
-51
-48 | 11/09
11/14
11/14
11/14
11/14 | - 24
- 43
- 61
- 55
- 51 | 11/15
11/21
11/23
11/23
11/23 | -3
-4
-9
-4
-3 | | 33-131
33-132
33-141
*33-158
33-163 | 394109
394131
393848 | 753009
753009
752010 | E I DUPONT
E I DUPONT
E I DUPONT
ACME MARKETS
RICHMAN ICE CREAM | CHAMBERS OB2-1
CHAMBERS OB2-2
CHAMBERS OB3-3
ACME 1
RICHMAN 1 | 1965 | 7
7
5
62
25 | 237- 247
192- 200
197- 207
562- 575
455- 475 | -46
-49
-45
NM
NM | 11/14
11/14
11/14
NM
NM | -57
-54
-53
-25
-27 | 11/21
11/21
11/21
11/16
11/09 | -11
-5
-8
NA
NA | | *33-164
33-165
33-166
33-167
*33-198 | 393942
393942
393942 | 752234
752234
752234 | RICHMAN ICE CREAM
E I DUPONT
E I DUPONT
E I DUPONT
DUBOICE, MAURICE | RICHMAN 2
COURSE LAND 4A
COURSE LAND 4B
COURSE LAND 4C
IRR 74 | 1967 | 20
47
47
47
51 | ³ 446
634- 644
568- 578
430- 440
337- 362 | -29
-15
-15
-14
-23 | 11/18
11/16
11/16
11/16
11/17 | -30
-18
-18
-16
-25 | 11/09
11/22
11/22
11/22
11/15 | -1
-3
-3
-2
-2 | | *33-251
33-298
33-299
33-300
33-301 | 393952
393957
393957 | 752432
752432 | USGS E I DUPONT E I DUPONT E I DUPONT E I DUPONT | SALEM 1 OBS
COURSE LAND P2
COURSE LAND 1A
COURSE LAND 1B
COURSE LAND 10 | 1966
1966 | 3
9
26
25
26 | 699- 709
385- 635
604- 614
507- 517
404- 415 | -28
-19
-17
-13
-12 | 09/29
11/14
11/14
11/14
11/14 | -32
-22
-20
-15
-14 | 11/22
11/22
11/22
11/22
11/22 | -4
-3
-3
-2
-2 | | 33-302
33-303
33-304
*33-305
33-328 | 394000
394000
394013 | 752439
752439
752459 | E I DUPONT | COURSE LAND 2A
COURSE LAND 2C
COURSE LAND 2C
COURSE LAND P3
CARNEY PT 1 | 1966
1966 | 30
30
30
14
5 | 583 - 593
533 - 544
435 - 445
381 - 457
175 - 195 | -16
-10
-9
-14
-17 | 11/16
11/16
11/16
11/16
11/14 | -19
-12
-11
-16
-23 | 11/22
11/22
11/22
11/22
11/22 | -3
-2
-2
-2
-6 | | 33-334
633-354
633-362
*633-364
33-442 | 393904
393926
392743 | 751946
751927
753158 | E I DUPONT
WOODSTOWN WD
WOODSTOWN WD
PUBLIC SERV E-G
US ARMY CORPS | CARNEY PT 6
WWD 2
WWD 3
PW5
EAB 8 | 1957
1946
1975
1974
1982 | 45
60 | 157- 182
670- 705
692- 712
765- 840
95- 100 | -16
-36
-30
-66
4 -2 | 11/14
11/18
11/18
11/17
11/17 | -23
-27
-34
-62
-6 | 11/22
11/10
11/10
11/21
11/08 | -7
9
-4
4 | | 33-443
33-444
33-448
33-449
33-450 | 394459
394648
394614 | 752702
752538
752539 | US ARMY CORPS | EAB 8A
DGB 100
EHW-4
EHW-5
EHW-6 | 1982
1982
 | 23
413
410
10 | 35 - 40
83 - 88
37 - 42
32 - 37
28 - 33 | 4 5
NM
4 8
4 8
4 8 | 11/17
NM
11/08
11/08
11/08 | 12
12
12
3
6 | 11/08
12/01
11/08
11/09
11/09 | NA
4 | | ⁶ 33-452
33-457
*PH- 12
*059-128
Cc55-17 | 392751
395342
393548 | 753207
751021
753740 | PUBLIC SERV E-G PUBLIC SERV E-G US NAVY TEXACO NEW CASTLE W+L | HOPE CREEK
PSEG 6
#27
SCHOOL 2 | 1976
1981
1944
 | 410
201,
9
30
40 | 746- 817
115-1 ₈ 135
101
89- 115 | -66
NM
NM
NM | 11/17
NM
NM
NM
NM | -68
-31
-7
-28
-7 | 11/21
12/08
11/08
11/14
11/14 | -2
NA
NA
NA
NA | | *Cd51-08
Dc15-16
Dc22-18
*Dc25-27
*Dc34-06 | 393954
393833
393848 | 753534
753814
753532 | NEW CASTLE W+L
NEW CASTLE W+L
ARTESIAN WC
JAMES RIVER CORP
USGS (DEL) | BASIN RD 1
FRENCHTOWN #2
FAIR WINDS 27
7
DEL NAT GUARD | 2 | 22
32
50
10
28 | 65- 82
99- 109
69- 89
129- 183
183- 188 | MM
MM
MM
MM | NM
NM
NM
NM | -12
-13
-14
-16
-28 | 11/14
11/14
11/15
11/14
11/14 | NA
NA
NA
NA
NA | | *Eb23-24
Ec32-03 | 393316 | 754216 | USGS (DEL)
UNION CARBIDE | LUMS POND C
ST GEORGES 3 | | 60
11 | 432- 436
318- 328 | NM
NM | NM
NM | -34
-32 | 11/14
11/14 | NA
NA | Datum is sea level. Depth below land surface. Well depth. Revised from Eckel and Walker (1986). Water level measured in 1984. Well screened in the undifferentiated part of the Potomac-Raritan-Magothy aquifer system. Water level measured in 1989. Figure 15A. Water-level hydrographs for observation wells screened in the middle aquifer and undifferentiated part of the Potomac-Raritan-Magothy aquifer system, 1983-89. Figure 15B. Water-level hydrographs for observation wells screened in the middle aquifer and undifferentiated part of the Potomac-Raritan-Magothy aquifer system, 1983-89. Figure 15C. Water-level hydrographs for observation wells screened in the middle aquifer and undifferentiated part of the Potomac-Raritan-Magothy aquifer system, 1983-89. # Water Levels Water-level measurements and well-construction information for 141 wells screened in the lower aquifer of the Potomac-Raritan-Magothy aquifer system are listed in table 11. The number of wells in New Jersey in which water levels were measured, by county, is as follows: Burlington, 16; Camden, 71; Gloucester, 34; and Salem, 6. In Philadelphia County, Pennsylvania, water levels were measured in four wells, and in New Castle County, Delaware, water levels were measured in nine wells. The water levels in these wells were used to define the potentiometric surface shown on plate 8, though only 50 wells are plotted. The most extensive cone of depression in the lower aquifer of the Potomac-Raritan-Magothy aquifer system is in the north-central part of Camden County; water levels in the center of the cone reach a depth of 103 ft below sea level (pl. 8). The cone extends radially northeast into Burlington County and west into Gloucester County; water levels were more than 70 and 60 ft below sea level, respectively. In northwestern Salem County adjacent to the Delaware River, a small cone of depression developed probably as a result of localized withdrawals from industrial and public supply wells. Water levels in the cone of depression were more than 50 ft below sea level. Regionally, the highest water levels were measured in wells near the Delaware River in Camden and Gloucester Counties; water levels ranged from 1 ft above sea level to 10 ft below sea level. ### Water-Level Fluctuations Water-level changes in 102 wells screened in the lower aquifer were calculated for the 5-year period. Water levels rose in 39 wells, declined in 56 wells, and were unchanged in 9 wells. The largest regional declines were in the areas of Mount Laurel Township, Burlington County, and Cherry Hill Township, Camden County. Water levels in these areas declined as much as 17 ft and 9 ft, respectively, during 1983-88. In Camden County, water levels declined as much as 9 ft (from 94 ft to 103 ft below sea level) during 1983-88 where public supply wells are in operation. Along the Delaware River in Gloucester City, Camden County, water levels in wells 7-201, 7-204, and 7-221 rose as much as 17 ft (from 57 ft below sea level in 1983 to 40 ft in 1988) in about 5 years; local pumping ceased in 1984. These wells are affected by tides, and water levels vary as much as 6 ft. Analysis of static water levels in observation wells in areas distant from ground-water-withdrawal centers indicates regional trends in the lower aquifer. Water levels in observation wells 5-262, 5-645, 5-648, 7-185, 7-221, 7-412, 7-563, and 15-296 represent unstressed conditions that exist in the aquifer distant from the cone of depression that is centered in Camden County. Water levels measured in 1983 and 1988 indicate a regional decline in head of as much as 12 ft in Burlington County, 6 ft in southeastern Camden County, and 3 ft in Gloucester County. Water levels in observation wells in and adjacent to the outcrop area in Camden County increased about 5 ft. Hydrographs of water levels in observation wells screened in the lower aquifer of the Potomac-Raritan-Magothy aquifer system are shown in figure 16, and well
locations are shown on plate 8. The hydrographs for observation well 5-262 in northwestern Burlington County and well 7-412 in north-central Camden County show declines in water levels of about 5 ft over the 5-year period. The hydrograph for observation well 33-187 in northeastern Salem County shows a 4-ft water-level decline for the same period. The hydrographs reveal seasonal variations of 5 to 10 ft; seasonal variations were greatest after spring 1986. #### SUMMARY AND CONCLUSIONS The principal sources of water in the Coastal Plain of New Jersey are the major aquifers that underlie the region. Increased ground-water withdrawals have stressed many of these aquifers, causing large regional cones of depression to develop. Water levels were measured in nine aquifers from October 1988 through February 1989. Water levels in 1,251 wells were measured during the 1988 study and compared with 1,071 water levels measured during a previous study conducted in 1983. Water levels in 916 of the wells measured in the 1983 study were remeasured in the 1988 study. Water levels measured during the 1988 study were used to construct potentiometric-surface maps for the nine aquifers. Water-level hydrographs for observation wells screened in these aquifers were used to evaluate seasonal variations and long-term (1983-88) trends. Water levels continued to decline, although ground-water withdrawals from six of the major aquifers--Vincentown aquifer; Wenonah-Mount Laurel aquifer; Englishtown aquifer system; and the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system--stabilized or decreased. A small cone of depression in the confined Cohansey aquifer is centered in southern Cape May County. The lowest water levels in this aquifer were 20 ft below sea level. The potentiometric surface of the Atlantic City 800-foot sand of the Kirkwood Formation defines an elongated cone of depression that encompasses the barrier islands from Cape May City to Ocean County. The lowest water levels in this aquifer, as much as 96 ft below sea level, were measured in wells south of Atlantic City near Margate and Ventnor. Table 11. Water-level data for wells screened in the lower aquifer of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988 [B, Boro; C, Company; CORP, Corporation; CO, County; DEL, Delaware; DEL VAL DIST, Delaware Valley District; ft, feet; MCHVIL PNSK WCM, Merchantville Pennsauken Water Commission; mo, month; MUA, Municipal Utility Authority; NJ, New Jersey; Phila, Philadelphia; Sub, Suburban; T, Township; USGS, U.S. Geological Survey; WC, Water Company; WD, Water Department; WSC, Water Supply Company; --, missing data; NM, not measured; NA, not applicable; wells marked with an asterisk are shown on plate 8] | - | | | | , | | Alti-
tude
of
land | | 15 | Water
983 | | 88 | Change
in
water
level | |---|--|--|--|--|--------------------------------------|--|---|---------------------------------|--|------------------------------------|---|--------------------------------| | Well
number | Loca
Lati-
tude | tion
Longi-
tude | Owner | Local
number | Year
drilled | sur-
face ¹
(ft) | Screened
interval ²
(ft) | Alti-
tude
(ft) | Date
(mo/
day) | Alti-
tude ¹
(ft) | Date
(mo/
day) | (1983-
-88)
(ft) | | 5-123 | 395904 | 750009 | NJ AMER WC | DVWC 28 | 1969 | 25 | 226 - 261 | -12 | 10/27 | -16 | 11/03 | -4 | | *5-125 | 395929 | 745922 | NJ AMER WC | DVWC 10 | 1959 | 79 | 239 - 281 | -15 | 10/27 | -16 | 11/03 | -1 | | *5-130 | 400002 | 750044 | NJ AMER WC | RIVERTON 13 | 1963 | 70 | 167 - 198 | -3 | 10/26 | -14 | 11/03 | -11 | | 5-131 | 400002 | 750044 | NJ AMER WC | DVWC 27 | 1965 | 75 | 145 - 176 | NM | NM | -10 | 11/04 | NA | | *5-143 | 400105 | 745734 | NJ AMER WC | DVWC 23 | 1964 | 36 | 176 | NM | NM | -7 | 11/03 | NA | | 5-146 | 400122 | 745807 | NJ AMER WC | DVWC 19 | 1959 | 25 | 89- 130 | 2 | 10/26 | 0 | 11/03 | -2 | | *5-228 | 395630 | 745855 | MAPLE SHADE WD | MSWD 10 | 1975 | 40 | 440- 500 | -51 | 11/03 | -60 | 12/14 | -9 | | *5-262 | 395524 | 745025 | USGS | MEDFORD 4 OBS | 1967 | 372 | 1,125-1,145 | -58 | 09/30 | -60 | 11/07 | -2 | | *5-272 | 395834 | 745910 | MOORESTOWN T WD | MTWD 7 | 1969 | 40 | 335- 375 | -22 | 11/01 | -34 | 12/19 | -12 | | *5-645 | 400010 | 745216 | WILLINGBORO MUA | WMUA 2 OBS | 1965 | 340 | 431- 441 | -35 | 11/01 | -41 | 11/07 | -6 | | *5-648 | 400103 | 745409 | WILLINGBORO MUA | WMUA 3-OBS | 1965 | 34 | 306- 316 | -23 | 10/27 | - 29 | 11/02 | -6 | | *5-746 | 395727 | 745915 | MAPLE SHADE WD | MSWD 11 | 1978 | 20 | 389- 450 | -34 | 11/03 | - 36 | 11/18 | -2 | | *5-819 | 395608 | ³ 745649 | MT LAUREL MUA | MLMUA 6 | 1982 | 20 | 499- 590 | -59 | 11/02 | - 68 | 11/02 | -9 | | 5-822 | 395620 | 745529 | MT LAUREL MUA | MLMUA 3 | 1974 | 35 | 593- 642 | -57 | 11/02 | - 74 | 11/02 | -17 | | *5-823 | 395615 | 745512 | MT LAUREL MUA | MLMUA 4 | 1974 | 35 | 590- 640 | -62 | 11/02 | - 75 | 11/02 | -13 | | 5-1075 | 395632 | 745555 | MT LAUREL MUA | ELBOLANE 7 | 1987 | 40 | 528- 644 | NM | NM | -63 | 11/02 | NA | | *7- 12 | 395221 | 750637 | BELLMAWR B WD | BBWD 3 | 1956 | 35 | 334- 359 | -56 | 11/07 | -48 | 11/09 | 8 | | 7- 47 | 395524 | 750729 | CAMDEN SEWAGE | SEWAGE PLANT 1 | 1954 | 9 | 163- 193 | -14 | 11/28 | -12 | 11/18 | 2 | | 7- 64 | 395546 | 750533 | CAMDEN CITY WD | CITY 17 | 1954 | 34 | 230- 265 | -39 | 11/21 | -32 | 11/05 | 7 | | 7- 68 | 395557 | 750535 | CAMDEN CITY WD | CITY 13 | 1953 | 30 | 185- 225 | -35 | 11/21 | -28 | 11/05 | 7 | | 7- 78 | 395616 | 750632 | CAMDEN CITY WD | CITY 5N | 1963 | 22 | 134- 169 | -21 | 11/21 | - 19 | 11/04 | 2 | | 7- 79 | 395617 | 750710 | | CITY 12 | 1945 | 23 | 136- 166 | -13 | 11/21 | - 11 | 11/04 | 2 | | 7- 83 | 395638 | 750622 | | CITY 1A | 1953 | 10 | 135- 170 | -25 | 11/21 | - 22 | 11/04 | 3 | | 7- 90 | 395652 | 750607 | | CITY 10 | 1935 | 10 | 126- 158 | -24 | 11/21 | - 21 | 11/04 | 3 | | 7- 94 | 395706 | 750553 | | CITY 16 | 1954 | 23 | 149- 179 | -26 | 11/21 | - 24 | 11/04 | 2 | | 7- 98 | 395715 | 750519 | NJ AMER WC | CAMDEN DIV 52 | 1965 | 18 | 147- 198 | NM | NM | - 26 | 11/04 | NA | | 7-107 | 395720 | 750513 | NJ AMER WC | CAMDEN DIV 51 | 1965 | 20 | 141- 192 | -35 | 401/10 | - 30 | 11/04 | 5 | | 7-111 | 395726 | 750518 | NJ AMER WC | CAMDEN DIV 50 | 1958 | 9 | 139- 170 | NM | NM | - 26 | 11/04 | NA | | 7-112 | 395728 | 750520 | NJ AMER WC | CAMDEN DIV 48 | 1954 | 10 | 122- 164 | -30 | 401/10 | - 34 | 11/04 | -4 | | *7-121 | 395252 | 745943 | NJ AMER WC | BROWNING T-1 | 1973 | 80 | 672- 729 | -94 | 11/10 | - 103 | 11/04 | -9 | | 7-122 | 395252 | 745943 | NJ AMER WC | BROWNING 44 | 1974 | 80 | 684- 741 | NM | NM | -100 | 11/04 | NA | | 7-123 | 395252 | 745943 | NJ AMER WC | BROWNING 46 | 1973 | 81 | 664- 735 | - 93 | 11/10 | -101 | 11/04 | -8 | | 7-130 | 395353 | 745708 | NJ AMER WC | OLD ORCHARD A | 1967 | 71 | 743- 748 | - 75 | 11/10 | -80 | 11/03 | -5 | | 7-144 | 395442 | 750103 | NJ AMER WC | ELLISBURG 13 | 1953 | 39 | 491- 527 | - 64 | 11/16 | -67 | 11/09 | -3 | | 7-157 | 395600 | 750031 | NJ AMER WC | COLUMBIA 31 | 1967 | 45 | 376- 427 | NM | NM | -55 | 11/09 | NA | | 7-163 | 395609 | 750028 | NJ AMER WC | COLUMBIA 22 | 1960 | 39 | 371- 453 | -51 | 11/10 | -53 | 11/09 | -2 | | 7-171 | 395426 | 750514 | COLLINGSWOOD WD | CWD 7(B) | 1965 | 10 | 224- 313 | -45 | 11/03 | -33 | 11/07 | 12 | | *7-172 | 395426 | 750514 | COLLINGSWOOD WD | CWD 6(A) | 1965 | 10 | 218- 312 | -40 | 11/03 | -37 | 11/07 | 3 | | 7-175 | 395521 | 750439 | COLLINGSWOOD WD | CWD 1R | 1949 | 25 | 266- 306 | -48 | 11/03 | -47 | 11/07 | 1 | | 7-178 | 395522 | 750432 | COLLINGSWOOD WD | CWD 3 | 1960 | 15 | 257- 287 | -41 | 11/03 | -41 | 11/07 | 0 | | 7-179 | 395526 | 750424 | COLLINGSWOOD WD | CWD 5 | | 10 | 248- 278 | -44 | 11/03 | -40 | 11/07 | 4 | | 7-184 | 394950 | 745855 | NJ AMER WC | GIBBSBORO OB 1 | | 70 | 1,081-1,091 | -92 | 11/10 | -98 | 11/01 | -6 | | *7-185 | 394950 | 745855 | NJ AMER WC | GIBBSBORO OB 2 | | 70 | 940- 950 | -84 | 11/10 | -86 | 11/01 | -2 | | 7-188 | 395002 | 745851 | NJ AMER WC | GIBBSBORO 42 | | 65 | 934- 986 | NM | NM | -89 | 11/02 | NA | | 7-201 | 395318 | 750755 | AMSPEC CHEMICAL | AMSPEC 1 OBS | | 5 | 246- 266 | -57 | 11/08 | -40 | 11/15 | 17 | | 7-204
7-205
7-206
7-207
7-220 | 395322
395324
395329
395332
395349 | 750757
750736
750732
750734
750651 | AMSPEC CHEMICAL
HINDE AND DAUCH
HINDE AND DAUCH
HINDE AND DAUCH
GLOUCESTER CO WD | AMSPEC 4 OBS
3
2
JERSEY AVE 1
GCWD 40 | 1953
1945
1945
1945
1961 | 5
7
9
9 | 235 - 260
230 - 250
231 - 251
230 - 250
221 - 261 | -55
-50
-47
-47
-41 | 11/08
11/10
11/10
11/10
401/20 | -39
-37
-35
-36
-49 | 11/15
11/18
11/18
11/18
11/23 | 16
13
12
11
-8 | | 7-221
*7-273
7-278
*7-281
7-283 | 395356
395030
395238
395242
395246 | 750738
750347
750316
750323
750434 | USGS
NJ AMER WC
NJ AMER WC
NJ AMER WC
NJ AMER WC | COAST GUARD 1
OTTERBROOK 29
HADDON 15
HADDON 14
EGBERT OBS | 1966
1965
1956
1954
1962 | ³ 11
60
65
76
³ 24 | 162- 170
612- 712
452- 594
506- 598
445- 455 | -35
-71
-76
-76
-64 | 12/02
11/07
11/07
11/07
11/07 | -30
-77
-82
-79
-64 | 11/18
11/07
11/09
11/09
11/02 | -6
-3 | Table 11. Water-level data for wells screened in the lower
aquifer of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988--Continued | | | | | | | Alti-
tude
of | | | Water | level | | Change
in
water | |---|---|--|--|---|--------------------------------------|---|---|---------------------------------|--|--------------------------------------|---|---------------------------------| | Well
_number | Locat
Lati-
tude | ion
Longi-
tude | Owner | Local
number | Year
drilled | land
sur-
face ¹
(ft) | Screened
interval ²
(ft) | | Date
(mo/
day) | 19 | Date
(mo/
day) | level
(1983-
-88)
(ft) | | 7-290
7-292
*7-302
*7-320
7-332 | 395406
395406
395319
395652
395711 | 750317
750332
750140
750307
750220 | HADDON T WD
HADDON T WD
HADDONFIELD WD
MCHVIL PNSK WCM
MCHVIL PNSK WCM | HTWD 1
HTWD 4
RULON
WOODBINE 1
MARION 2 | 1952
1965
1956
1963
1963 | 56
45
25
65
65 | 436- 468
417- 448
523- 572
245- 285
223- 258 | -66
-64
-79
-40
-45 | 11/10
11/10
11/04
11/04
11/04 | - 74
- 67
- 85
- 38
- 45 | 11/18
11/18
11/10
11/09
11/09 | -8
-3
-6
2
0 | | 7-335
7-337
*7-341
7-343
*7-348 | 395720
395737
395800
395757
395801 | 750225
750626
750417
750640
750119 | MCHVIL PNSK WCM
USGS
MCHVIL PNSK WCM
USGS
MCHVIL PNSK WCM | MARION 1
PETTY ISLAND 2
DELA GARDEN 2
PETTY I WEST 1
PARK AVE 3 | 1957
1966
1954
1966
1958 | 61
5
39
5
25 | 243 - ₅ 278
5129
115 - 145
584
240 - 275 | -35
-19
-27
NM
-35 | 11/04
11/03
11/03
NM
11/03 | -35
-19
-25
-19
-34 | 11/09
12/13
11/09
11/08
11/09 | 0
2
NA
1 | | 7-354
7-359
7-367
7-368
7-370 | 395811
395835
395840
395848
395853 | 750556
750308
750307
750347
750348 | GENERAL FOODS CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD CAMDEN CITY WD | PETTY IS OBS
PUCHACK 5
PUCHACK 3
DELAIR 1
DELAIR 3 | 1949
1924
1924
1930
1930 | 12
30
10
10
8 | 578
136- 181
127- 175
106- 126
87- 127 | -26
-33
-22
-17 | 11/04
12/06
12/06
12/06
12/06 | 1
- 17
- 30
- 17
- 13 | 11/08
11/04
11/04
11/05
11/05 | -1
9
3
5
4 | | 7-373
7-375
7-379
7-382
*7-390 | 395900
395910
395919
395929
395944 | 750318
750307
750302
750253
750211 | CAMDEN CITY WD
CAMDEN CITY WD
CAMDEN CITY WD
CAMDEN CITY WD
CAMDEN CITY WD | MORRIS 6
MORRIS 8
MORRIS 10
MORRIS 4A
MORRIS 1 | 1932
1956
1960
1960 | 14
10
16
8
9 | 98- 133
5124
75- 115
95- 134
5107 | -25
-22
-12
-11
-5 | 11/17
11/17
11/17
11/17
11/17 | - 17
- 18
- 12
- 13
- 8 | 11/05
11/05
11/05
11/05
11/05 | 8
4
0
-2
-3 | | *7-412
7-523
7-527
*7-528
7-539 | 394922
395152
395550
395835
395902 | 745630
750542
750537
750302
750325 | NJ AMER WC
BELLMAWR B WD
CAMDEN CITY WD
CAMDEN CITY WD
CAMDEN CITY WD | ELM TREE 2 OBS
BELLMAWR BORO
PARKSIDE 18
PUCHACK 7
TW-6-79 | 1963
1977
1976
1975
1979 | ³ 149 1
75
40
20
10 | ,082-1,092
458- 557
258- 288
140- 180
101- 142 | -72
-64
-37
-28
-37 | 11/09
11/07
11/21
12/06
11/17 | -78
-67
-31
-32
-31 | 11/18
11/09
11/05
11/04
11/05 | -6
-3
6
-4
6 | | 7-541
7-547
7-548
7-563
7-596 | 395611
395731
395802
395712
3395239 | 750546
750458
750611
750612
750754 | CAMDEN CITY WD
NJ AMER WC
BRENAMAN, JE
NJ DEP
BROOKLAWN B WD | TW-8-79
54
1
HARRISON 3
BBWD 4 | 1979
1982
1982
1980
1982 | 20
35
10
15
10 | 215 - 253
160 - 200
73 - 83
97 - 117
263 - 293 | -34
-33
-5
-16
-52 | 11/21
⁴ 01/10
11/04
11/30
11/14 | -31
-32
-21
-15
-51 | 11/04
11/04
12/13
11/04
11/23 | 3
1
-16
1
1 | | 7-597
7-674
*15-139
15-175
15-220 | 395718
395403
394608
394858
395051 | 750513
750322
752135
752225
751349 | NJ AMER WC
HADDON T WD
PURELAND WC
AM DREDGING C
ESSEX CHEMICAL C | 55
HTWD 2A
TEST WELL 3
RACCOON IS T 1
OLIN 1 | 1983
1988
1970
1972
1954 | 11
60
8 7
8
10 | 136- 176
430- 473
301- 345
100- 120
234- 256 | -31
NM
3 -10
1
-7 | ⁴ 01/10
NM
11/16
11/17
11/09 | -30
-68
-11
-1
-7 | 11/04
11/18
11/09
11/16
11/07 | 1
NA
-1
-2
0 | | *15-282
*15-296
*15-308
15-309
15-311 | 394913
394942
395044
395045
395104 | 751105
751317
751242
751255
751244 | W DEPTFORD T WD
SHELL CHEMICAL O
PENNWALT CORP
PENNWALT CORP
PENNWALT CORP | 5 KINGS HIWAY
SHELL 5 OBS
TEST WELL 8
TEST WELL 5
TEST WELL 7 | 1973
1962
1969
1969
1969 | ³⁵⁵
³ 21
10
10
10 | 388 - 450
321 - 326
231 - 271
248 - 288
203 - 243 | NM
-16
-15
-13
-10 | NM
10/31
11/04
11/04
11/04 | -34
-18
-19
-17
-13 | 11/14
11/15
11/10
11/10
11/10 | NA
-2
-4
-4 | | *15-312
15-316
15-318
15-320
15-321 | 395107
395159
395207
395216
395221 | 750946
750907
750930
750915
750856 | W DEPTFORD T WD
TEXAS OIL C
TEXAS OIL C
TEXAS OIL C
TEXAS OIL C | 6 RED BANK AVE
EAGLE PT OBS 1
EAGLE POINT 2
EAGLE POINT 1
EAGLE POINT 5 | 1973
1948
1948
1947
1948 | ²⁰
332
17
20
13 | 322- 372
288- 298
259- 289
248- 288
237- 277 | -55
-54
-51
-52
-57 | 10/25
10/25
10/25
10/25
10/25 | -56
-58
-54
-56
-61 | 11/14
11/08
11/08
11/08
11/08 | -1
-4
-3
-4 | | *15-323
*15-326
15-327
*15-331
15-349 | 395235
395216
395221
394955
394650 | 750950
750739
750737
750908
752316 | TEXAS OIL C
WESTVILLE WD
WESTVILLE WD
WOODBURY WD
PURELAND WC | EAGLE PT 3 OBS
WWD 5
WWD 4
RAILROAD 5
LANDTECT 2 | 1948
1971
1957
1960
1973 | ³ 21
12
16
35
6 | 255- 275
243- 277
286- 313
405- 457
170- 220 | -43
-48
-59
-47
-6 | 09/29
11/03
11/03
10/31
11/16 | -44
-48
-51
-53
-9 | 11/16
11/15
11/15
11/10
11/08 | -1
0
8
-6
-3 | | *15-350
15-398
15-430
15-434
15-438 | 394550
394935
395156
395224
395012 | 752313
751938
750938
750734
751333 | PURELAND WC
PETTIT, LOUIS
TEXAS OIL C
WESTVILLE WD
GLOUCESTER MUA | LANDTECT 1
419
EAGLE POINT 6A
WWD 6
GCMUA 1 | 1973
1979
1981
1980
1981 | ³ 20
1
15
15
10 | 234 - 284
50 - 60
256 - 328
265 - 317
202 - 217 | -9
NM
-49
-60
NM | 11/16
NM
10/25
11/03
NM | -9
-2
-53
-49
-18 | 11/07
11/03
11/08
11/15
11/14 | 0
NA
-4
11
NA | | 15-533
*15-615
*15-618
*15-671
15-678 | 395155
394637
394804
394957
394946 | 751051
751916
751933
750530
751612 | NATIONAL PARK WD
USGS
USGS
USGS
MOBIL OIL C | NPWD 6
SHIVELER LOWER
GAVENTA DEEP OB:
DEPTFORD DEEP OF
W-5C | | 22
29
7
35
9 | 240 - 272
378 - 388
230 - 240
650 - 670
194 - 204 | -33
NM
NM
NM | 11/07
NM
NM
NM
NM | -34
-15
-7
-69
-8 | 11/09
11/14
11/14
11/16
11/03 | - 1
NA
NA
NA
NA | | 15-680
*15-711
*15-712
*15-738 | 395038
395048
394808
394948 | 751605
751518
751724
751524 | MOBIL OIL C
MOBIL OIL C
USGS
MOBIL OIL C | W-7C
W-8C
Stefka-1 obs
W-4C | 1985
1985
1986
1985 | 9
12
7
5 | 186- 196
153- 163
275- 290
188- 198 | NM
NM
NM | NM
NM
NM | -5
-5
-10
-9 | 11/03
11/03
11/15
11/03 | NA
NA
NA | Table 11. Water-level data for wells screened in the lower aquifer of the Potomac-Raritan-Magothy aquifer system, 1983 and 1988--Continued | Well
number | Loc
Lati
tude | ation
Longi
tude | | Local
number | Year
drilled | Alti-
tude
of
land
sur-
face ¹
(ft) | Screened
interval ²
(ft) | Alti | Water
983
- Date
(mo/
day) | | 988
- Date
(mo/
day) | Change
in
water
level
(1983-
-88)
(ft) | |--|--|---|--|--|--------------------------------------|--|---|---------------------------------|--|------------------------------------|---|--| | *15- 742
*15- 770
*33- 86
33- 137
*33- 187 | 394652
395202
394557
394112
394037 |
751004
751115
752523
753028
751914 | USGS USGS B F GOODRICH CORP E I DUPONT USGS | MANTUA DEEP OBS
NAT PARK 1-PW-L
4 (PW-3)
DRINKWATER 8
POINT AIRY OBS | 1986
1987
1967
1943
1958 | 84
10
13
14
3 73 | 757- 777
204- 224
169- 189
317- 347
664- 672 | NM
NM
- 12
NM
- 26 | NM
NM
11/18
NM
11/18 | -39
-25
-11
-54
-28 | 11/16
11/15
11/09
11/21
11/16 | NA
1
NA
-2 | | *33- 330
33- 335
33- 346
33- 402
PH- 01 | 394205
394212
394256
394657
395334 | 752657
752751
3752718
752546
751009 | PENNS GROVE WSC
E I DUPONT
PENNS GROVE WSC
US ARMY CORPS
US NAVY | LAYTON 11
CARNEY PT 7
LAYNE 1
EHW-1 TEST
1 | 1936
1967
1956
1980
1940 | 16
11
19
6
11 | ⁵ 394
270 - 430
317 - 357
109 - 114
207 - 232 | -15
-32
-35
3 -4
NM | 11/10
11/16
11/18
11/08
NM | - 23
- 35
- 47
- 6
- 8 | 12/12
11/23
11/23
11/09
11/08 | -8
-3
-12
-2
NA | | PH- 05
*PH- 63
*PH- 750
010-450
904-2997 | 395314
395408
395445
394140
393712 | 751010
751040
750831
753238
753742 | US NAVY
ROOSEVELT PARK
S.A.F. AMERICA INC
USGS (DEL)
ARTESIAN WC | 19
CITY POOL
#1 SAF
USGS 4 D 3
ARTESIAN VIL 2 OBS | 1946
1919
1979
1956 | 9
6
10
15
20 | 242- ⁵ 247
⁵ 185
122- 167
48- 51
153- 174 | NM
NM
NM
NM | NM
NM
NM
NM
NM | -22
-5
-8
-17
-20 | 11/08
11/08
11/08
11/14
11/15 | NA
NA
NA
NA
NA | | Cd31- 19
Cd31- 26
*Cd52- 27
*Db1- 55
*Dc33- 08 | 394224
393739
394011
393917
393712 | 753405
753944
753347
754016
753742 | USGS (DEL) ARTESIAN WC NEW CASTLE W+L WILMINGTON SUB WC ARTESIAN WC | POLYGON 1
GLENDALE 4 OBS
WATER PLANT 3
SMALLEYS DAM
ARTESIAN VIL 2 | | 69
68
9
20
19 | 72- 75
261- 355
128- 141
215- 238
125- 225 | NM
NM
NM
NM | NM
NM
NM
NM | 14
22
-5
-10
-21 | 11/14
11/15
11/14
11/15
11/15 | NA
NA
NA
NA | | Eb23 - 22
*Eb23 - 35 | 393316
393316 | 754216
754421 | USGS (DEL)
USGS (DEL) | LUMS POND C
LUMS POND D | | 60
60 | 432- 436
540- 544 | NM
NM | NM
NM | -34
-49 | 11/15
11/15 | NA
NA | ¹ Datum is sea level Depth below land surface Revised from Eckel and Walker (1986) Water level measured in 1984 ⁵ Well depth ⁶ Water level measured in 1989 Figure 16. Water-level hydrographs for observation wells screened in the lower aquifer of the Potomac-Raritan-Magothy aquifer system, 1983-8° In the Piney Point aquifer in New Jersey, the lowest water levels, as much as 60 ft below sea level, were measured in wells located in Ocean County. In southern Cumberland County, water levels were as much as 44 ft below sea level, probably because of large withdrawals of ground water in Kent County, Delaware. The lowest water levels measured in the Englishtown aquifer system were 256 ft below sea level in the Spring Lake Heights area. In the overlying Wenonah-Mount Laurel aquifer, water levels as much as 218 ft below sea level were measured in coastal Monmouth and Ocean Counties. The cones of depression in the Wenonah-Mount Laurel aquifer coincide with potentiometric lows in the Englishtown aquifer system, probably as a result of withdrawals from the Englishtown aquifer system and subsequent leakage of water from the Wenonah-Mount Laurel aquifer to the Englishtown aquifer system. The most extensive cones of depression are located in the upper, middle, and lower aquifers of the Potomac-Raritan-Magothy aquifer system. The lowest water levels were measured in cones of depression in Camden, Monmouth, and Middlesex Counties. Water levels were as low as 107 ft below sea level in the upper aquifer in Camden County and 116 ft below sea level in the undifferentiated part of the aquifer system that spans an area of Middlesex and Monmouth Counties. In the confined Cohansey aquifer, water levels declined about 1 ft throughout most of Cape May County, but water levels in southern Cape May County rose 1 to 13 ft. Water levels in the Rio Grande water-bearing zone of the Kirkwood Formation declined 2 to 3 ft. In the Atlantic City 800-foot sand, water levels declined 21 ft in the cone of depression, whereas regional trends indicate water-level declines of 1 to 10 ft. Water levels in the Piney Point aquifer declined 18 to 26 ft in the center of the cone of depression along the coast of Ocean County. Declines in Cumberland County ranged from 1 to 10 ft and probably resulted from withdrawals in Delaware. Water-level data for the Vincentown aquifer are limited; however, water levels measured by an extremes recorder in an observation well in Ocean County indicated no significant change for the 5-year period. Heads in the Wenonah-Mount Laurel aquifer declined 1 to 29 ft in Burlington, Camden, Gloucester, and Salem Counties. Heads declined as much as 52 ft in the center of the cone of depression in Monmouth County. This cone coincides with the major cone of depression in the Englishtown aquifer system. In the Englishtown aquifer system, heads declined as much as 26 ft during the 5-year period, in part, because of changes in pumping patterns of public supply companies. In the Potomac-Raritan-Magothy aquifer system, water levels declined 8 to 16 ft in and adjacent to cones of depression in Camden County and 2 to 46 ft in Monmouth and Middlesex Counties. In Ocean County, water levels declined 10 to 29 ft. #### SELECTED REFERENCES - Anderson, H.R., and Appel, C.A., 1969, Geology and ground-water resources of Ocean County, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 29, 93 p. - Barksdale, H.C., Greenman, D.W., Lang, S.M., Hilton, G.S., and Outlaw, D.E., 1958, Ground-water resources in the tri-state region adjacent to the lower Delaware River: New Jersey Department of Conservation and Economic Development Special Report 13, 190 p. - Barksdale, H.C., Johnson, M.E., Schaefer, E.J., Baker, R.C., and DeBuchananne, G.D., 1943, The ground-water supplies of Middlesex County, New Jersey: New Jersey State Water Policy Commission Special Report 8, 160 p. - Barksdale, H.C., Sundstrom, R.W., and Brunstein, M.S., 1936, Supplementary report on the ground-water supplies of the Atlantic City region: New Jersey State Water Policy Commission Special Report 6, 139 p. - Clark, G.A., Meisler, Harold, Rhodehamel, E.C., and Gill, H.E., 1968, Summary of ground-water resources of Atlantic County, New Jersey, with special reference to public water supplies: New Jersey Department of Conservation and Development Circular 18, 53 p. - Clark, J.S., and Paulachok, G.N., 1989, Water levels in the principal aquifers of Atlantic County and vicinity, New Jersey, 1985-86: New Jersey Geological Survey Open-File Report 88-3, 33 p. - Cooper, H.H., Jr., Kohout, F.A., Henry, H.R., and Glover, R.E., 1964, Sea water in coastal aquifers: U.S. Geological Survey Water-Supply Paper 1613-C, p. C28. - Eckel, J.A., and Walker, R.L., 1986, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983: U.S. Geological Survey Water-Resources Investigations Report 86-4028, 62 p., 7 pl. - Farlekas, G.M., 1979, Geohydrology and digital-simulation model of the Farrington aquifer in the northern Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations 79-106, 55 p. - Farlekas, G.M., Nemickas, Bronius, and Gill, H.E., 1976, Geology and ground-water resources of Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 76-76, 146 p. - Gill, H.E., 1962, Ground-water resources of Cape May County, New Jersey: Salt-water invasion of principal aquifers: New Jersey Department of Conservation and Economic Development Special Report 18, 171 p. - Gill, H.E., and Farlekas, G.M., 1976, Geohydrologic maps of the Potomac-Raritan-Magothy aquifer system in the New Jersey Coastal Plain: U.S. Geological Survey Hydrologic Investigations Atlas HA-557, 2 sheets, scale 1:500,000. #### SELECTED REFERENCES -- Continued - Hardt, W.F., and Hilton, G.S., 1969, Water resources and geology of Gloucester County, New Jersey: New Jersey Department of Conservation and Economic Development Special Report 30, 130 p. - Jablonski, L.A., 1968, Ground-water resources of Monmouth County, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 23, 117 p. - Leahy, P.P., 1979, Digital model of the Piney Point aquifer in Kent County, Delaware: Delaware Geological Survey, Report of Investigations, No. 29, 80 p. - Luzier, J.E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p. - Martin, Mary, 1990, Ground-water flow in the New Jersey Coastal Plain: U.S. Geological Survey Open-File Report 87-528, 182 p. - Meisler, Harold, 1980, Plan of study for the northern Atlantic Coastal Plain Regional Aquifer System Analysis: U.S. Geological Survey Water-Resources Investigations 80-16, 27 p. - 1989, The occurrence and geochemistry of salty ground water in the northern Atlantic Coastal Plain: U.S. Geological Survey Professional Paper 1404-D, 51 p. - Nemickas, Bronius, 1976, Digital-simulation model of the Wenonah-Mount Laurel aquifer in the Coastal Plain of New Jersey: U.S. Geological Survey Open-File Report 75-672, 42 p. - Nemickas, Bronius, and Carswell, L.D., 1976, Stratigraphic and hydrologic relationship of the Piney Point aquifer and the Alloway Clay Member of the Kirkwood Formation: Journal of Research, v. 4, no. 1, p. 1-7. - Nichols, W.D., 1977a, Digital computer simulation model of the Englishtown Formation in the northern
Coastal Plain of New Jersey: U.S. Geological Survey Open-File Report 77-73, 101 p. - _____ 1977b, Geohydrology of the Englishtown Formation in the northern Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations 76-123, 62 p. - Parker, G.G., Hely, A.G., Keighton, W.B., and Olmsted, F.H., 1964, Water resources of the Delaware River Basin: U.S. Geological Survey Professional Paper 381, 200 p. - Pucci, A.A., Jr., Pope, D.A., and Gronberg, J.M., 1994, Hydrogeology, simulation of regional ground-water flow and saltwater intrusion, Potomac-Raritan-Magothy aquifer system, northern Coastal Plain of New Jersey: New Jersey Geological Survey Report GSR 36, 209 p. ### SELECTED REFERENCES -- Continued - Rosenau, J.C., Lang, S.M., Hilton, G.S., and Rooney, J.G., 1969, Geology and ground-water resources of Salem County, New Jersey: New Jersey Department of Conservation and Economic Development Special Report 33, 142 p. - Rush, F.E., 1968, Geology and ground-water resources of Burlington County, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 26, 65 p. - Schaefer, F.L., 1983, Distribution of chloride concentrations in the principal aquifers of the New Jersey Coastal Plain, 1977-81: U.S. Geological Survey Water-Resources Investigations Report 83-4061, 56 p. - Thompson, D.G., 1928, Ground water supplies of the Atlantic City region: New Jersey Department of Conservation and Development Bulletin 30, 138 p. - U.S. Geological Survey, 1967, Engineering geology of the Northeast Corridor, Washington, D.C., to Boston, Mass.: Coastal Plain and surficial deposits: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-514-A, 7 sheets, scale 1:250,000. - Vowinkel, E.F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1950-80: U.S. Geological Survey Open-File Report 84-226, 32 p. - Walker, R.L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations Report 82-4077, 56 p. - Woodruff, K.D., 1969, The occurrence of saline ground water in Delaware aquifers: Delaware Geol. Survey Rept. of Inv. No. 13, 45 p. - Zapecza, O.S., Voronin, L.M., and Martin, M., 1987, Ground-water-withdrawal and water-level data used to simulate regional flow in the major Coastal Plain aquifers of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4038, 120 p. - Zapecza, O.S., 1989, Hydrogeologic framework of the New Jersey Coastal Plain: U.S. Geological Survey Professional Paper 1404-B, 49 p., 24 pls. #### GLOSSARY - <u>Artesian aquifer</u>. An aquifer containing water under sufficient pressure to cause the water level in a well open to the aquifer to rise above the top of the aquifer. Also called confined aquifer. - <u>Cone of depression</u>. A low area in the potentiometric surface usually centered in the area of greatest concentration of withdrawals. - <u>Confining layer (confining unit)</u>. A body of relatively impermeable material stratigraphically adjacent to one or more aquifers. The hydraulic conductivity may range from nearly zero to some value several orders of magnitude lower than that of the aquifer. - Head, static. The height above a standard datum of the surface of a column of water (or other liquid) that can be supported by the pressure at a given point. Head, when used alone in this report, is understood to mean static head. - <u>Hydraulic conductivity</u>. A measure of the ability of a material to transmit water. - <u>Hydraulic gradient</u>. The change in static head per unit of distance in a given direction. If not specified, the direction is understood to be that of the maximum rate of decrease in head. - <u>Isochlor</u>. The line on a map which shows equal chloride concentrations. - National Geodetic Vertical Datum of 1929 (NGVD of 1929). A geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada, formerly called mean sea level. NGVD of 1929 is shown on all the plates but is referred to as sea level in the text of this report. - Observation well. Any well lacking a pump. - <u>Porosity</u>. The property of a rock or soil for containing interstices or voids. It may be expressed quantitatively as the ratio of the volume of its interstices to its total volume. It may be expressed as a decimal fraction or as a percentage. - <u>Potentiometric surface</u>. A surface which represents the static head in an aquifer. The potentiometric surface is defined by the levels to which water will rise in tightly cased wells open to the aquifer. See head, static. - <u>Production well</u>. Any well with a pump. **☆U.S. GOVERNMENT PRINTING OFFICE: 1996-0-711-070**